

MONITORING YEAR 5 ANNUAL REPORT Final

NORKETT BRANCH STREAM MITIGATION SITE

Union County, NC DEQ Contract 004673 DMS Project Number 95360

Data Collection Period: June - October 2018 Final Submission Date: December 12, 2018

PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center

Raleigh, NC 27699-1652

Mitigation Project Name DMS ID

Norkett Branch

River Basin Cataloging Unit 95360 Yadkin 03040105 County
Date Project Instituted

Date Prepared

Union 7/5/2012 5/22/2018 USACE Action ID NCDWR Permit No 2012-01082

2013-0250

			Strea	am Credits			Wetland Credits							
Credit Release Milestone	Scheduled Releases	Warm	Cool	Cold	Anticipated	Actual Release Date	Scheduled Releases	Riparlan Riverine	Riparlan Non- riverine	Non-riparlan		Coastal	Anticipated	Actual
Potential Credits (Mitigation Plan)	(Stream)	9,929.600		1	(Stream)		(Forested)			(Coastal)		(Wetland)	r Release Date (Wetland)	
Potential Credits (As-Built Survey)	(oucum,	10,098,000			1 (00.00)	(oucum)	(, 0,0500)				(Coustin)		(recountry)	(viction)
1 (Site Establishment)	N/A				N/A	N/A	N/A				N/A		N/A	N/A
2 (Year 0 / As-Built)	30%	3,029.400			2014	7/24/2014	30%				30%		N/A	N/A
3 (Year 1 Monitoring)	10%	1,009.800			2015	4/23/2015	10%				10%		N/A	N/A
4 (Year 2 Monitoring)	10%	1,009.800	- 11		2016	4/25/2016	10%				15%		N/A	N/A
5 (Year 3 Monitoring)	10%	1,009.800			2017	8/8/2017	15%	V40			20%		N/A	N/A
6 (Year 4 Monitoring)	5%	504.900			2018	4/25/2018	5%				10%		N/A	N/A
7 (Year 5 Monitoring)	10%				2019		15%				15%		N/A	N/A
8 (Year 6 Monitoring)	5%			4	2020		5%			i	N/A		N/A	N/A
9 (Year 7 Monitoring)	10%				2021		10%			0	N/A		N/A	N/A
Stream Bankfull Standard	10%	1,009.800			2016	4/25/2016	N/A		4	là	N/A		N/A	N/A
Total Credits Released to Date		7.573.500	1	r -					4	4				*

DEBITS (release	d credits only)																	
		Ratios	1	1.5	2.5	5	1	3	2	5	1	3	2	5	11	3	2	5
			Stream Restoration	Stream	Stream Enhancement if	Stream Preservation	Riparian Restoration	Ripatian Creation	Riparten Enhancement	Riparlan Preservation	Nondpadan Restoration	Nontipatian Greation	Nondpadan Enhancement	Nondpadan Preservation	Coastal Marsh Restoration	Coastal Marsh Creation	Coastal Marsh Enhancement	Coastal Marsh Preservation
As-Built Amount	ts (feet and acres)		9,196.000	Martin Laboratoria	2,255.000													
As-Built Amount	ts (mitigation cred	fits)	9,196.000		902.000													
Percentage Rele	eased		75%		75%													
Released Amous	nts (feet / acres)		6,897.000		1,691.250													
Released Amous	nts (credits)		6,897,000		676,500													
NCDWR Permit	USACE Action ID	Project Name		1-7-21	- 20			1	- 19 6				1100 - 2075			Conserve title	athrasian	Company of the
2002-0672	2009-00876	NCDOT TIP R-2559 / R-3329 - Monroe Bypass and Connector, Union County	2,758.800												100 PM			
	2010-01630	NCDOT TIP P-5208A C G		2.5/04.0	676.500	du ter	SAULT SILE	A 11 / A 11				Viernati		Territory Dates	trees north-tes	Markey St. Asi	Tarin Inches	Minn of the
2015-0362	2008-03229	NCDOT TIP I-3702A / B-5804 - I-77 Improvements, Cabarrus County	2,758,800		676.500													
2011-0431	2011-01237	NCDOT TIP R-2248E - Charlotte Outer Loop	1,379.400		338.250		Partie.		liv-sit-		Sun,		A STATE				14-17-1	
Lange Hotel					ansaule.							J. Josie,						
order to the					The state of	100	Same in the				1		100000000000000000000000000000000000000			- San Blill	DESIGNATION.	
Remaining Amo	unts (feet / acres)		0.000	,,	0.000							Ì						
Remaining Amo	unts (credits)		0.000		0.000											1		

Contingencies (if any): None	-
Trus	9/6/18
Signature of Wilmington District Official Approving Credit Release	Date

^{1 -} For DMS, no credits are released during the first milestone
2 - For DMS projects, the second credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the NCIRT by posting it to the NCEEP Portal, provided the following criteria have been met:

¹⁾ Approval of the final Mitigation Plan
2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property
3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan

⁴⁾ Reciept of necessary DA permit authorization or written DA approval for porjects where DA permit issuance is not required

^{3 -} A 10% reserve of credits is to be held back until the bankfull event performance standard has been met

PREPARED BY:

Wildlands Engineering, Inc. 1430 South Mint Street, Suite 104 Charlotte, NC 28203

> Phone: 704.332.7754 Fax: 704.332.3306

December 12, 2018

Mr. Matthew Reid NC Department of Environmental Quality Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801

RE: Norkett Branch Stream Mitigation Site-Year 5 Monitoring Report

Final Submittal for DMS

Contract Number 004673, RFP Number 16-004110, DMS# 95360

Yadkin River Basin - CU# 03040105; Union County, NC

Dear Mr. Reid:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments and observations from the Norkett Branch Stream Mitigation Site Draft Year 5 Monitoring Report. The following are Wildlands responses to your comments and observations from the report noted in italics lettering.

DMS Comment; Section 1.3 Monitoring Year 5 Summary – Second sentence indicates 440 stems per acre. This should be 442 according to vegetation monitoring data.

Wildlands Response; The text has been updated to 440 stems per acre as reported in the vegetation monitoring data.

DMS Comment; Table 2 – Please add invasive treatment to the table for the parrot feather that was treated with glyphosate in 2018.

Wildlands Response; The MY5 invasive treatment was added to Table 2.

DMS Comment; Table 2 – Section 1.2.1 discusses a significant replant that occurred in February 2015. Please also include information in the table.

Wildlands Response; The replanting was previously reported on Table 2 as part of the Maintenance and Replanting that took place after MY1 however the window the work was completed was reported as October 2014-January 2014. The timing for the Maintenance and Replanting has been corrected to October 2014-February 2015.

DMS Comment; CCPV – The photo point labels on Sheet 4 were inadvertently not shown in the draft. Please update for final.

Wildlands Response; The photo point labels have been added to Sheet 4..

DMS Comment; Cross-sections – Please turn off markers for previous monitoring years data and only show markers for current year. With multiple years shown, it becomes difficult to view results.

Wildlands Response; Previous monitoring year markers have been turned off and only MY5 markers are shown.

DMS Comment; Appendix 5 – Please include the stream flow gage data plots like previous monitoring vears.

Wildlands Response; Stream flow gage data plots have been included in the final report.

Enclosed please find three (3) hard copies of the Year 5 Final Monitoring Report and one (1) CD with the final corrected electronic files for DMS distribution. Please contact me at 704-332-7754 x110 if you have any questions.

Sincerely,

Kirsten Y. Gimbert

Environmental Scientist

kgimbert@wildlandseng.com

Kirstin Y. Stembert

EXECUTIVE SUMMARY

Wildlands Engineering (Wildlands) restored and enhanced a total of 10,706 linear feet (LF) of stream on a full-delivery mitigation site in Union County, NC. The project streams consist of Norkett Branch, a third order stream, two unnamed first order tributaries to Norkett Branch (UT1 and UT2), and two intermittent tributaries to Norkett Branch (UT2A and UT3). Water quality treatment Best Management Practices (BMPs) were installed to treat water quality on the non-jurisdictional headwaters of UT3 and an adjacent ephemeral drainage feature. The project is expected to provide 10,098 stream mitigation units (SMUs).

The Norkett Branch Stream Mitigation Site (Site) is located in southeastern Union County, NC, approximately ten miles southeast of the City of Monroe and five miles north of the South Carolina state line. The Site is located in the Yadkin River Basin; eight-digit Cataloging Unit (CU) 03040105 and the 14digit Hydrologic Unit Code (HUC) 03040105081020 (Figure 1). This CU was identified as a targeted local watershed in the 2009 Lower Yadkin- Pee Dee River Basin Restoration Priority (RBRP) plan. This plan identifies agricultural practices and runoff as the probable major sources of water quality impairment in the Middle Lanes Creek watershed. The 2008 North Carolina Division of Water Resources' (NCDWR) Basinwide Water Quality Plan (BWQP) lists turbidity and nutrient concentrations of nitrogen and phosphorus as specific concerns in the Rocky River watershed portion of the Yadkin- Pee Dee River basin. Other pollutants of concern cited in this report are fecal coliform bacteria, iron, and copper. The project reaches flow off-site, directly into Lanes Creek, which is included on the NCDWR 303d list of impaired streams. The section of Lanes Creek downstream of the project Site is listed as impaired due to turbidity (NCDWR, 2012). The project goals established in the Mitigation Plan (Wildlands, 2013) were completed with careful consideration of goals and objectives that were described in the RBRP and NCDWR BWQR and to meet the North Carolina Division of Mitigation Services (DMS) mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The following project goals were established to address the watershed and project Site stressors:

- Improve aquatic and terrestrial habitat within the riparian corridor and provide habitat corridor extension from adjacent downstream forested habitat;
- Improve additional water quality aspects within stream channels on Site;
- Decrease sediment inputs to the stream channels and decrease turbidity in receiving Lanes Creek; and
- Decrease phosphorus, nitrogen, and fecal coliform inputs to the stream channels.

Stream restoration and enhancement, water quality treatment BMP construction, and planting efforts were completed between December 2013 and April 2014. Baseline as-built monitoring activities were completed between April and May 2014. A conservation easement is in place on the 31.6 acres of riparian corridor and stream resources to protect them in perpetuity.

Overall, the Site has met the required stream and vegetation mitigation success criteria for MY5. The average planted stem density for the site is 442 stems per acre and is on track to meet final density criteria. Visual assessment revealed good herbaceous cover across the site with only isolated spots of invasive plant populations. A small portion (2.56 acres) of planted woody vegetation located along Norkett Branch Reaches 1 and 2 are shorter than expected for five-year-old trees. Geomorphically, the stability of each restored and enhanced stream remains in good standing, with cross-section dimensions falling within the range of parameters for the appropriate Rosgen (1996) stream type. Based on visual assessment the channels show little sign of instability within the bed, bank, or engineered structures, except isolated instances of relic bank erosion. Vegetation at these isolated spots has not fully reestablished. If necessary, adaptive management during the upcoming monitoring year may address areas of concern. The Site met final hydrological success criteria after MY3. During MY5, all three of the

i

restored reaches (Norkett Branch, UT1, and UT2) recorded at least three bankfull or greater events. Water quality monitoring results indicate an overall trend of pollutant removal capacity of both storm water BMPs.

NORKETT BRANCH STREAM MITIGATION SITE

Monitoring Year 5 Annual Report

_	-	_		-	_	-		-	-		_	-
т	л	R	LE		6	rr	ЛΓ	IT		N	ш	S

1.2

1.2.1

1.2.2	Vegetation Problem Areas 1-3
1.2.3	Stream Assessment
1.2.4	Stream Problem Areas
1.2.5	Hydrology Assessment
1.2.6	Water Quality BMPs1-5
1.2.7	Existing Wetland Monitoring1-6
1.3 Mo	onitoring Year 5 Summary1-6
Section 2: N	METHODOLOGY2-1
Section 3: R	REFERENCES
APPENDICES	
Appendix 1	General Figures and Tables
Figure 1	Project Vicinity Map
Figure 2	Project Component/Asset Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Information and Attributes
Table 5	Monitoring Component Summary
Appendix 2	Visual Assessment Data
Figure 3.0-3.6	Integrated Current Condition Plan View
Table 6a-g	Visual Stream Morphology Stability Assessment Table
Table 7	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs
	Areas of Concern
Appendix 3	Vegetation Plot Data
Table 8	Vegetation Plot Criteria Attainment
Table 9	CVS Vegetation Plot Metadata
Table 10	Planted and Total Stem Counts (Species by Plot with Annual Means)
Appendix 4	Morphological Summary Data and Plots
Table 11a-c	Baseline Stream Data Summary
Table 12a-c	Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section)
Table 13a-g	Monitoring Data – Stream Reach Data Summary
	Cross-Section Plots
	Reachwide and Cross-Section Pebble Count Plots
Appendix 5	Hydrology Data
Table 14	Verification of Bankfull Events
	Stream Flow Gage Plots
Appendix 6	Water Quality BMPs
Table 15	Water Quality Sampling Results
Table 16	Pollutant Removal Rates
	Water Quality Data
	Pollutant Removal Plot

Section 1: PROJECT OVERVIEW

The Site is located in southeastern Union County, NC, approximately ten miles southeast of the City of Monroe and five miles north of the South Carolina state line. The Site is located in the Yadkin River Basin; eight-digit Cataloging Unit (CU) 03040105 and the 14-digit Hydrologic Unit Code (HUC) 03040105081020 (Figure 1). The Site is located in the Carolina Slate Belt of the Piedmont physiographic province (USGS, 1998). The project watershed consists primarily of agricultural land, pasture, and forest. A conservation easement was recorded on 31.6 acres within the seven parcels (Deed Book 06095, Pages 0530-0589).

The Site is located within the North Carolina Division of Water Resources (NCDWR) subbasin 03-07-14. The project streams consist of Norkett Branch, a third order stream, two unnamed first order tributaries to Norkett Branch (UT1 and UT2), and two intermittent tributaries to Norkett Branch (UT2A and UT3). Norkett Branch (DWQ Index No. 13-17-40-8) is the main tributary of the project and is classified as WS-V waters. Class WS-V waters are protected as water supplies draining to Class WS-IV waters or waters used by industry to supply drinking water or waters formerly used as water supply, and are protected for secondary recreation, fishing, wildlife and aquatic life, maintenance of biotic integrity, and agriculture. The drainage area for the project Site is 2,034 acres (3.18 sq mi) at the lower end of Norkett Branch Reach 2.

Mitigation work at the Site included restoration on Norkett Branch, UT1, and UT2. Enhancement II was implemented on UT2A and UT3. Water quality treatment BMPs were also implemented to treat agricultural drainage upstream of UT3 and agricultural drainage in the right floodplain of Norkett Branch Reach 2. All onsite riparian areas were planted with native species. Construction and planting activities were completed in April 2014. Directions and a map of the Site are provided in Figure 1 and project components are illustrated in Figure 2.

1.1 Project Goals and Objectives

Prior to construction activities, the streams were routinely maintained to provide drainage for agricultural purposes. Impacts to the stream included straightening and ditching, eroding banks, and a lack of stabilizing riparian vegetation. The streams were used as a water source for cattle in some areas, resulting in over-widened, unstable trampled banks. Algal blooms, presumably from agricultural nutrient loading, were observed during Site visits. Trampled stream banks, over-widened channels, and banks illustrating signs of instability were a common occurrence throughout the Site. The alterations of the Site to promote farming resulted in impairment of the ecological function of Site's streams. Specific functional losses at the Site include degraded aquatic habitat, altered hydrology, and reduction of quality of in-stream and riparian wetland habitats and related water quality benefits. Table 4 in Appendix 1 and Tables 11 a-c in Appendix 4 present the Site's pre-restoration conditions in detail.

The mitigation project is intended to provide numerous ecological benefits such as pollutant removal and improved aquatic and terrestrial habitat. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. The agricultural stressors and pollutants have been specifically addressed by the Site design. The major goals of the stream mitigation project are to provide ecological and water quality enhancements to the Norkett Branch, Lane's Creek, Rocky River and Yadkin River Basins while creating a functional riparian corridor at the Site level and restoring a Piedmont Bottomland Forest as described by Schafale and Weakley (1990). These project goals were established with careful consideration of goals and objectives that were described in the RBRP and to meet the North Carolina Division of Mitigation Services (DMS) mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The following project goals and objectives were established and listed in the Mitigation Plan (Wildlands, 2013) to address the effects listed above:

- Improve aquatic and terrestrial habitat within the riparian corridor and provide habitat corridor extension from adjacent downstream forested habitat. By restoring appropriate channel cross section and profile, including riffle and pool sequences, coarse substrate zones for macroinvertebrates and deep pool habitat for fish will also be restored. Introduction of large woody debris, rock structures, brush toe, and native stream bank vegetation will provide additional habitat and cover for both fish and macroinvertebrates. Adjacent buffer areas will be restored by planting native vegetation which will provide habitat and forage for terrestrial species. These areas will be allowed to receive more regular inundating flows, and vernal pools may develop over time increasing habitat diversity. A watershed approach, restoring riparian corridor functions on multiple interconnected tributaries as well as treating agricultural drainage from headwater features with Best Management Practices (BMPs), will allow for large-scale riparian corridor connectivity.
- Improve additional water quality aspects within stream channels on Site. Riffle/pool sequences
 will be restored to provide re-aeration allowing for oxygen levels to be maintained in the
 perennial reaches. Creation of deep pool zones will lower temperature, helping to maintain
 dissolved oxygen concentrations. Establishment and maintenance of riparian buffers will create
 long-term shading of the stream to minimize thermal heating. Water quality BMPs situated in
 the headwaters upstream of jurisdictional streams will treat agricultural runoff before it reaches
 project streams.
- Decrease sediment inputs to the stream channels and decrease turbidity in receiving Lanes Creek. Cattle will be fenced out of the riparian corridor, eliminating bank trampling. Sediment input from eroding stream banks will be reduced by bioengineering and installing in-stream structures while creating a stable channel form using geomorphic design principles. Sediment from off-site sources will be captured by deposition on restored floodplain areas where native vegetation will slow overland flow velocities. By allowing for more overbank flooding and by increasing channel roughness, in-channel velocities can be reduced. This will lower bank shear stress and decrease bank erosion.
- Decrease phosphorus, nitrogen, and fecal coliform inputs to the stream channels. Nitrogen and phosphorus chemical fertilizers, pesticides, and cattle waste will be decreased by buffering adjacent agricultural operations from the restored channels. Cattle will be fenced out to eliminate in-channel fecal pollution. Off-site nutrient input will be absorbed on-site by filtering flood flows through restored floodplain areas, water quality BMPs, and vernal pools positioned to treat concentrated overland flow. Flood flows will be allowed to disperse through native vegetation across the reconnected floodplain. Increased surface water residency time will provide contact treatment time and groundwater recharge potential.

1.2 Monitoring Year 5 Data Assessment

Annual monitoring was conducted between June and October 2018 to assess the condition of the project. The stream restoration success criteria for the Site follows the approved success criteria presented in the Mitigation Plan (Wildlands, 2013).

1.2.1 Vegetative Assessment

A total of 26 vegetation plots were established during the baseline monitoring within the project easement area using standard 10-meter by 10-meter vegetation monitoring plots. Plots were randomly established within planted portions of the stream restoration and enhancement areas to capture the heterogeneity of the designed vegetative communities. The plot corners were marked and are recoverable either through field identification or with the use of a GPS unit. Reference photographs were taken at the plot origin looking diagonally across the plot to the opposite corner to capture the same reference photograph locations as the as-built. The final vegetative success criteria will be the survival of 210 planted stems per acre in the riparian corridor along restored and enhanced reaches at the end of the seventh year of monitoring (MY7). Planted vegetation must average 10 feet in height in each plot by MY7. The interim measure of vegetative success for the Site will be the survival of at least 260 stems per acre at the end of the fifth year of monitoring (MY5). If this performance standard is met by MY5 and stem density is trending towards success (i.e., no less than 260 five-year-old stems per acre), monitoring of vegetation on the Site may be terminated provided written approval is provided by the USACE in consultation with the NC Interagency Review Team.

The MY5 vegetation survey was completed in August 2018 and resulted in all 26 vegetation plots meeting the year five interim success criteria (260 stems per acre). Overall, the Site's average planted stem density resulted in 442 stems per acre which exceeds the year five interim success criteria. The average woody stem density of the Site with volunteers included is 559 stems per acre. Supplemental planting added 6,000 stems (37% of the MY1 stem total) on reaches east of Philadelphia Church Road in February 2015. The supplemental planting was in response to low stem vigor of many plots and high bare root mortality between the as-built and MY1 which is attributed to dry site conditions, soil fertility, scouring flows shortly after installation, insects, and disease. An additional supplemental planting in MY5 added 400 stems (3% of the MY5 stem total) on portions of Norkett Branch and UT1 in response to low stem density. Some of the monitoring plots showed an increase in planted stem densities in MY2 and MY5 because of the supplemental planting. In MY5, planted stems heights averaged 6.6 feet which is a 28% increase in height compared to the MY4 stem height average of 5.2 feet. A portion of the planted stems along Norkett Reaches 1 and 2 are shorter than expected for five-year-old trees. The slower growth is likely attributable to soil infertility. A majority of woody stems (82%) had a vigor rating of 3 or more (indicating that the stem is healthy and more likely to survive) during MY5.

Refer to Appendix 3 for vegetation summary tables and raw data tables and Appendix 2 for vegetation plot photographs, the Current Condition Plan View (CCPV) maps, and the vegetation condition assessment table.

1.2.2 Vegetation Problem Areas

Site vegetation continues to establish with little to no bare areas in MY5. During the late winter/early spring of MY4, several areas previously identified as "Bare/Poor Herbaceous Cover" were addressed through a combination of reseeding and the installation of hügelkultur (hugel) beds. The hugel beds have provided additional organic matter and aid in moisture retention to encourage herbaceous and woody vegetation growth. Hugel bed installation involved the excavation of small floodplain trenches that were backfilled with organic matter, covered in a mixture of soil and brush, and planted with live whips, live stakes and seeded. The live stakes and whips were planted to anchor the beds. As the woody

species establish they will help diffuse the energy of out of bank events and trap additional organic matter. Debris wracklines were observed on the upstream side of several hugel beds during MY5.

Isolated pockets of invasive species including cattail (*Typha latifolia*), Chinaberry tree (*Melia azedarach*), Chinese privet (*Ligustrum sinense*), and parrot feather (*Myriophyllum aquaticum*) were observed during MY5, however most are too small to map (less than 1,000 square feet) and are not impacting planted vegetation. A few pockets of parrot feather between Station 123+00 and 125+00 on Norkett Branch were treated with glyphosate, however this aquatic invasive may persist in pockets until the streambed is fully shaded. Areas of dense groundsel tree (*Baccharis halimifolia*); an aggressive coastal plain native evergreen shrub, were mechanically and chemically treated during MY4. This species is not typically considered a species of high concern for DMS-required monitoring; however, portions of the Site were infested with dense thickets of this shrub that were competing with planted woody and herbaceous vegetation. The cut/spray treatment was considered successful, with only minor pockets of groundsel re-sprouts observed during MY5.

Adaptive Management

If warranted, future adaptive management activities may be employed to continue to improve herbaceous vegetative cover and improve the growth rates of planted woody stems such as soil amendments in targeted areas. Areas noted with invasive plant populations will be treated in accordance with herbicide, not to exceed label prescribed application rates. If necessary, cut/spray techniques and/or application of a broadleaf-selective herbicide may be used to control groundsel tree re-sprouts.

1.2.3 Stream Assessment

A total of 20 cross-sections were installed along the stream restoration reaches. One permanent cross-section was installed per 20 bankfull widths along stream restoration reaches, with riffle and pool sections in proportion to DMS guidance. Each cross-section was permanently marked with pins to establish its location. Annual cross-section survey includes points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg. Photographs were taken looking upstream and downstream at each cross-section. Stream photographs were also taken at 51 permanent photograph reference points throughout the project area. A reach-wide pebble count was conducted in all restoration reaches (Norkett Branch Reach 1, Norkett Branch Reach 2, UT1, UT2 Reach 1, UT2 Reach 2, UT2 Reach 3A, and UT2 Reach 3B) for classification purposes. A wetted perimeter pebble count was conducted at each permanent riffle cross-section to characterize the pavement.

Riffle cross-sections on the restoration reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. All riffle cross-sections should fall within the parameters defined for channels of the appropriate Rosgen stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Substrate materials in the restoration reaches should indicate a progression towards or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

Morphological surveys for MY5 were conducted between June and August 2018. In MY5 cross-section dimensional measurements were calculated All streams within the Site appear stable and have met the success criteria for MY5. Riffle cross-sections surveyed along the restoration reaches appear stable and typically show little change in the bankfull area, maximum depth ratio, or width-to-depth ratio. Slight downcutting observed during MY3 on the left channel edge of riffle cross-section 15 on UT2 Reach 2 exhibited no progression in MY5 and appears stable. The minor adjustment is not currently an area of

concern. All surveyed riffle cross-section dimensions fell within the parameters defined for channels of the appropriate Rosgen stream type (Rosgen 1996). In-stream structures used to enhance channel habitat and stability on the outside bank of meander bends; such as brush toe, are providing stability and habitat as designed. Pattern data will be completed in MY7 only if there are indicators from the dimensions that significant geomorphic adjustments have occurred. No changes were observed that indicated a change in the radius of curvature or channel belt width; therefore, pattern data was not collected or included in the MY5 report. Visual assessment during MY5 revealed a couple isolated instances of bare or scoured banks. These are discussed in more detail in section 1.2.4.

In general, substrate materials in the restoration reaches indicate maintenance of coarser materials in the riffle features and finer particles in the pool features. Increases in the silt/clay particle size class were observed in reachwide counts for Norkett Branch Reach 1, Norkett Branch Reach 2, UT1, and UT2 Reach 3B as well as riffle 100-counts conducted on Norkett Branch Reach 1 (Cross-section 5), Norkett Branch Reach 2 (Cross-section 7), and UT1 (Cross-section 9). The increases may be a result of low flow conditions reducing transport capacity during the monitoring year. Increased fines in riffle cross-sections may also be the result of low-flow conditions that allow in-stream vegetation to establish and accumulate a thin layer of fines on top of coarser substrate.

Please refer to Appendix 2 for the stream visual assessment tables, the CCPV maps, and stream reference photographs. Refer to Appendix 4 for the morphological data and plots.

1.2.4 Stream Problem Areas

Stream areas of concern include two isolated areas of relic bare and scoured stream bank at Stations 103+00 and 132+75 of Norkett Branch. The relic bank scour at Station 103+00 was hidden by groundsel trees until they were removed in late MY4. Herbaceous vegetation is beginning to regenerate on this section of bank however the area lacks woody vegetation. The bare bank at Station 132+75 is not actively eroding but does not appear to be re-establishing vegetation.

Adaptive Management

Bare or eroded banks will be watched for advancement in the upcoming monitoring years and if necessary, repairs may be implemented. Refer to Appendix 2 for the stream visual assessment tables, the CCPV maps, reference photographs, and photographs of the stream problem areas.

1.2.5 Hydrology Assessment

Hydrologic monitoring was accomplished using both manual crest gage readings and In-situ Rugged Troll 100 pressure transducers installed at three surveyed cross-sections throughout the site (XS6 on Norkett Branch Reach 2, XS9 on UT1, and XS18 on UT2 Reach 3A). Rainfall amounts were measured by an Onset HOBO rain gauge located at the site and supplemented with data from a nearby weather station at the Monroe Airport (KEQY). To meet hydrological success criteria, two or more bankfull events must occur in separate years within the restored reaches by the end of MY7. The success criteria have already been met for the seven-year monitoring period after MY3. During MY5, at least three bankfull or greater events was recorded along Norkett Branch, UT1, and UT2 which includes the remnants of Hurricane Florence that led to over 5 inches of rain on September 16, 2018. Immediately following the large storm event malfunctions occurred at the pressure transducers on UT1 and UT2 Reach 3A. The pressure transducers will be fixed or replaced for MY6. Please refer to Appendix 5 for hydrology data.

1.2.6 Water Quality BMPs

Water quality grab samples were collected during the monitoring period to assess the functionality of the Step Pool Storm Conveyance BMP (SPSC BMP) and the Pocket Wetland BMP (PW BMP). This sampling is not part of the success criteria for the project. The following expected rates for pollutant removal were established in the Mitigation Plan (Wildlands, 2013) and in accordance with published

rates of removal from similar BMP approaches. The SPSC BMP is expected to provide similar pollutant removal rates as the published removal rates of a bioretention area with internal water storage (NCDWQ, 2007), which are 85% TSS removal, 40% TN removal, and 40% TP removal. The PW BMP is expected to provide 60% TSS removal, 20% TN removal, and 45% TP removal, which is similar to extended detention wetlands (Center for Watershed Protection, 2000 and United States Environmental Protection Agency, 2012).

The monitoring plan calls for quarterly sampling; however, samples were unable to be obtained during Q2 due to the timing and intensity of rain events. Inflow and outflow were sampled at each BMP after storm events on 3/12/2018 (Q1) and 8/6/2018 (Q3). First flush style sample bottles were used to capture stormflow, which filled during the rain event at a pre-determined stage height and were retrieved within 24 hours. Samples were analyzed for total suspended solids (TSS), phosphorus as total phosphorus (TP), nitrogen as total nitrogen (TN), Nitrate/Nitrite (NO_x), and Total Kjeldahl Nitrogen (TKN), by Prism Laboratories Inc. Refer to in Appendix 6 for water quality sampling results and pollutant removal rates.

The SPSC BMP provided pollutant removal of TN in both sampling events with removal ranging from 33% to 83%. TP increased 31% between the inlet and outlet samples during the Q1 sample. A TP removal of 87% was recorded during Q3 sampling. TSS was reduced by 68% in the Q1 sample. TSS was not analyzed in the Q3 sample due to insufficient sample volume.

Increases in TN were documented in both sampling events in the PW BMP ranging from 8% to 580%. The PW BMP provided pollutant removal of TP in both sampling events ranging from 60% to 83%. TSS was reduced by 92% in the Q1 sample. TSS was not analyzed in the Q3 sample due to insufficient sample volume.

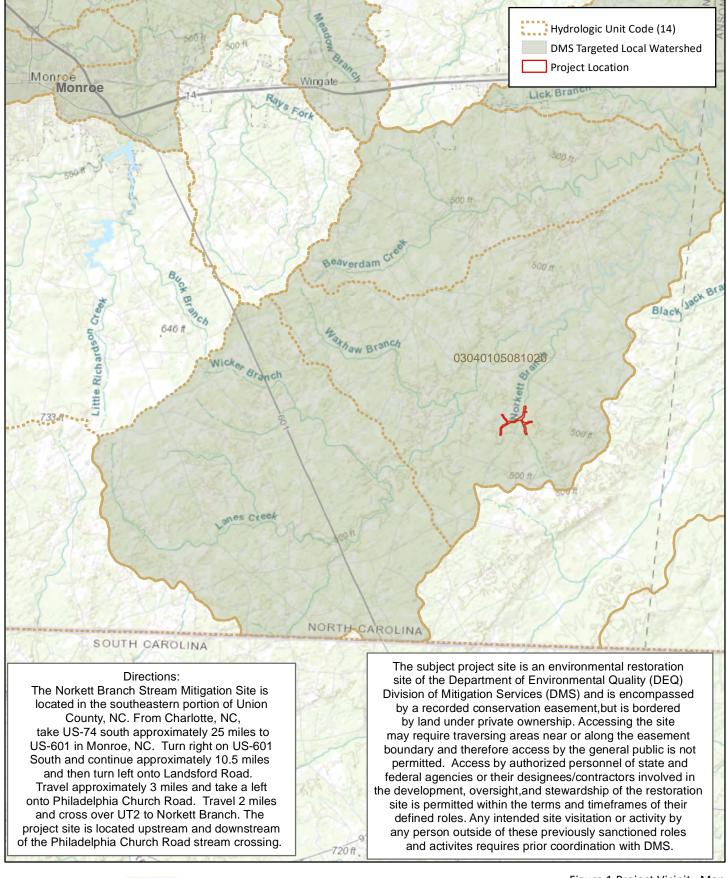
1.2.7 Existing Wetland Monitoring

A permanent photo station (photo point #16) was established in the stream-to-wetland conversion area in Norkett Branch Reach 1 near station 104+00 on the left floodplain. The former channel area is maintaining wetland hydrology and supports a wetland plant community composition. The photo point (#16) is included in the Stream Photographs section of Appendix 2.

1.3 Monitoring Year 5 Summary

Overall, the Site has met the required stream and vegetation mitigation success criteria for MY5. The average planted stem density for the site is 442 stems per acre and is on track to meet upcoming density criteria. The MY5 average stem height was 6.6 feet which is a 28% increase from the MY4 average stem height of 5.2 feet. Morphological surveys indicate that the channel dimensions are stable and functioning as designed. Visual assessment indicates the channels show little sign of instability within the bed, bank, or engineered structures. All restored channels (Norkett Branch, UT1, and UT2) each recorded multiple bankfull or greater events during MY5. The MY7 hydrological success criteria for the Site was achieved after MY3. Water quality monitoring results indicate continued pollutant removal capacity of both storm water BMPs.

Summary information/data related to various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting data can be found in the Mitigation Plan documents available on the DMS website. All raw data supporting the tables and figures in the appendices are available upon request.


Section 2: METHODOLOGY

Geomorphic data collected followed the standards outlined in *The Stream Channel Reference Site: An Illustrated Guide to Field Techniques* (Harrelson et al., 1994) and in the *Stream Restoration: A Natural Channel Design Handbook* (Doll et al., 2003). Longitudinal and cross-sectional data were collected using a total station and were georeferenced to established benchmarks and NC State Plane coordinates. Morphological surveys were conducted using a total station tied to these geo-referenced (control) points. Reachwide pebble counts were conducted along each restored reach for channel classification. Cross-section substrate analyses conducted in each surveyed riffle followed the 100 count wetted perimeter methodology to characterize pavement. All CCPV mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using was Pathfinder and ArcView. Crest gauges were installed during the baseline monitoring period in surveyed riffle cross-sections and are monitored quarterly. Hydrology attainment installation and monitoring methods are in accordance with the USACE (2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-NCEEP Level 2 Protocol (Lee et al., 2008).

Section 3: REFERENCES

- Center for Watershed Protection, 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Elliot City, Maryland.
- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration: A Natural Channel Design Handbook.
- Harrelson, C.C., Rawlins, C.L., Potyondy, J.P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Techniques.* Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf.
- North Carolina Division of Water Quality (NCDWQ), 2007. Stormwater Best Management Practices Manual. Retrieved from: http://portal.ncdenr.org/web/wq/ws/su/bmp-ch9
- North Carolina Division of Water Resources (NCDWR) Basinwide Planning Program, 2008. Yadkin Pee-Dee River Basinwide Water Quality Plan. Retrieved from: http://portal.ncdenr.org/web/wq/ps/bpu/basin/yadkinpeedee/2008
- North Carolina Division of Water Resources (NCDWR), 2012. North Carolina 303(d) List Category 5. August 24, 2012. Retrieved from: http://portal.ncdenr.org/c/document_library/get_file?uuid=9d45b3b4-d066-4619-82e6-ea8ea0e01930&groupId=38364
- North Carolina Ecosystem Enhancement Program (NCEEP), 2009. Lower Yadkin-Pee Dee River Basin Restoration Priorities (RBRP). Retrieved from: http://www.nceep.net/services/restplans/Yadkin_Pee_Dee_RBRP_2009_Final.pdf
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, 3rd approx. North Carolina Natural Heritage Program, Raleigh, North Carolina.
- United States Army Corps of Engineers (USACE). 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC
- United States Environmental Protection Agency (EPA), 2012. Stormwater Wetland Factsheet. Retrieved from: https://www.epa.gov/npdes/national-menu-best-management-practices-bmps-stormwater#edu
- United States Geological Survey (USGS). 1998. North Carolina Geology. Retrieved from: http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Weakley, A.S. 2008. Flora of the Carolinas, Virginia, Georgia, Northern Florida, and Surrounding Areas (Draft April 2008). University of North Carolina at Chapel Hill: Chapel Hill, NC.
- Wildlands Engineering, Inc. 2013. Norkett Branch Stream Mitigation Site Mitigation Plan. DMS, Raleigh, NC.
- Wildlands Engineering, Inc. 2014. Norkett Branch Stream Mitigation Site Baseline Monitoring Document and As-Built Baseline Report. DMS, Raleigh, NC.

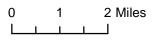
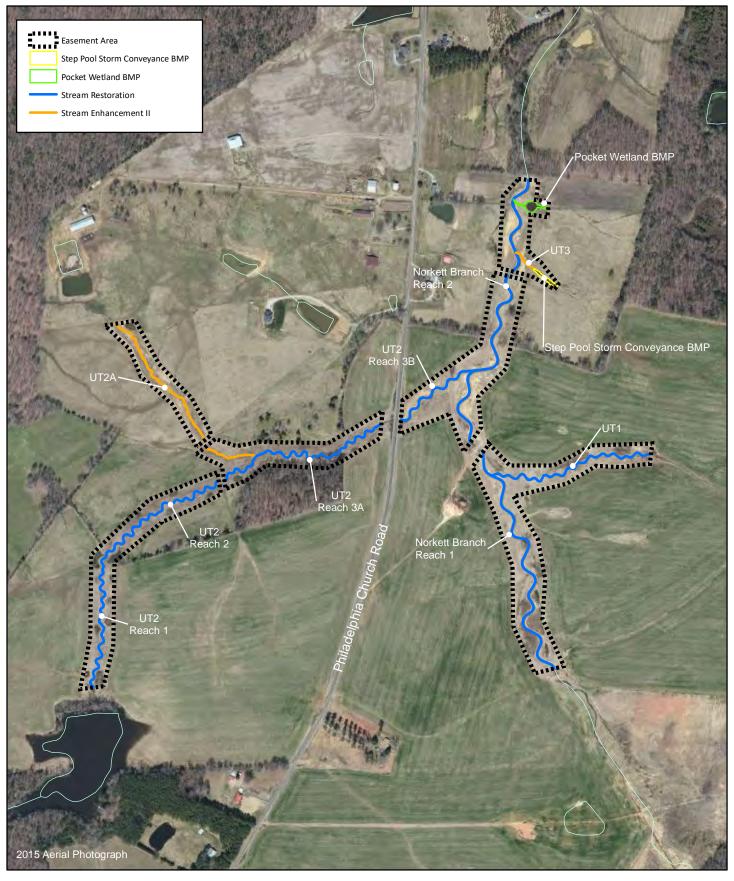



Figure 1 Project Vicinity Map Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

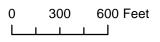


Figure 2 Project Component/Asset Map Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

Table 1. Project Components and Mitigation Credits

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

				Mitigati	on Credits	5				
		eam	·	an Wetland	·	an Wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous	Nutrient Offset
Туре	R	RE	R	RE	R	RE				
Totals	9,196.000	902.000	N/A	N/A	N/A	N/A	N/A	N/A	·	N/A
				Project C	omponen [.]	ts				
	Reach ID	As-Built Stationing ¹	Existing Footage/ Acreage	Approach		or Restoration valent	Restoration Footage/ Acreage ²		Mitigation Ratio	Credits (SMU) ²
STREAMS										•
Norke	tt Branch Reach 1	100+31-117+60 & 118+60- 124+00	1,980 LF	P1	R		2,313		1:1	2313.000
Norke	tt Branch Reach 2	124+00-131+84 & 132+25- 138+99	1,505 LF	P1	R		1,513		1,513 1:1	
	UT1	200+00-211+98	840 LF	P1	I	₹	1,2	12	1:1	1212.000
	UT2 Reach 1	300+41-310+80	820 LF	P1	ſ	₹	1,0)33	1:1	1033.000
	UT2 Reach 2	310+80-321+71 & 322+06- 325+20	1,272 LF	P1	R		1,4	16	1:1	1416.000
	UT2 Reach 3A	325+20-335+58	923 LF	P1	ı	γ	1,041		1,041 1:1	
	UT2 Reach 3B	336+90-343+48	380 LF	P1/2	ſ	₹	66	58	1:1	668.000
	UT2A	401+53-411+46 & 411+84- 415+31	1,296 LF	EII	E	11	1,340		2.5:1	536.000
	UT3	505+42-507+12	163 LF	EII	E	Ш	17	70	2.5:1	68.000
	SPSC BMP	Upstream of UT3 draina	ge	Step Pool Storm Conveyance	WQ	ВМР	29.7 ac	treated	1:8	238.000 ³
	PW BMP	non-jurisdictiona eastern Norke floodpl	ett Branch	Pocket Wetland	WQ BMP		19.9 ac treated		1:3	60.000 ³

Component Summation											
Restoration Level	Stream (LF)	•	n Wetland acres)	Non- Riparian Wetland	Buffer (square feet)	Upland (acres)					
Restoration	9,196										
Enhancement											
Enhancement I											
Enhancement II	1,510										
Creation											
Preservation											
High Quality Preservation											
Alternative Mitigation	49.6 ac treated										

N/A: not applicable

^{1.} Stationing based off of centerline as-built alignment which matched with the design alignment.

Credits are based off of the as-built thalweg alignment.
 Credits determined for the BMPs were established in the mitigation plan (2013).

Table 2. Project Activity and Reporting History

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Activity or Report		Data Collection Complete	Completion or Scheduled Delivery	
Mitigation Plan		July 2012 - October 2012	July 2013	
inal Design - Construction Plans		July 2013 - November 2013	November 2013	
Construction		December 2013 - April 2014	April 2014	
emporary S&E mix applied to entire pro	oject area ¹	December 2013 - April 2014	April 2014	
Permanent seed mix applied to reach/se	gments	December 2013 - April 2014	April 2014	
Bare root and live stake plantings for rea	ch/segments	March 2014 - April 2014	April 2014	
Baseline Monitoring Document (Year 0)		April 2014 - May 2014	June 2014	
/ 4 Maiti	Stream Assessment	October 2014	Danasahas 2014	
ear 1 Monitoring	Vegetation Assessment	September 2014	December 2014	
Maintenance and Replanting		October 2014 - February 2015	February 2015	
(2 NAitin	Stream Assessment	April 2015	Danasahas 2015	
ear 2 Monitoring	Vegetation Assessment	September 2015	December 2015	
/ 2 Manifernia	Stream Assessment	April 2016	December 2016	
ear 3 Monitoring	Vegetation Assessment	June 2016	December 2016	
nvasive Treatment		July 2016	December 2016	
Bank repairs and hugel bed installation i	n bare areas	March 2017	Spring 2017	
/ A B A it i	Stream Assessment	August 2017	Danasahas 2017	
ear 4 Monitoring	Vegetation Assessment	August 2017	December 2017	
nvasive Treatment		June - July, November 2017	N/A	
Supplmental planting		January - March 2018	Spring 2018	
nvasive Treatment		June 2018	N/A	
/oar E Monitoring	Stream Assessment	June-August 2018	December 2018	
ear 5 Monitoring	Vegetation Assessment	August 2018	December 2018	
ear 6 Monitoring		2019	December 2019	
ear 7 Monitoring		2020	December 2020	

 $[\]ensuremath{^{1}\text{Seed}}$ and mulch is added as each section of construction is completed.

Table 3. Project Contact TableNorkett Branch Stream Mitigation Site DMS Project No.95360

Monitoring Year 5 - 2018

	Wildlands Engineering, Inc.
Designer	1430 S Mint St. Suite 104
Emily Reinicker, PE, CFM	Charlotte, NC 28203
	704.332.7754
	Land Mechanic Designs, Inc.
Construction Contractor	126 Circle G Lane
	Willow Spring, NC 27592
	Bruton Natural Systems, Inc
Planting Contractor	P.O. Box 1197
	Fremont, NC 27830
	Bruton Natural Systems, Inc
Seeding Contractor	P.O. Box 1197
	Fremont, NC 27830
Seed Mix Sources	Green Resource, Colfax, NC
Nursery Stock Suppliers	Bruton Natural Systems, Inc
Bare Roots	Dykes and Son Nursery, McMinnville, TN
Live Stakes	Foggy Bottom Nursery, Lansing, NC
Monitoring Performers	Wildlands Engineering, Inc.
Monitoring, POC	Kirsten Gimbert
Wionitoning, FOC	704.332.7754, ext. 110

Table 4. Project Information and Attributes

Norkett Branch Stream Mitigation Site DMS Project No. 95360

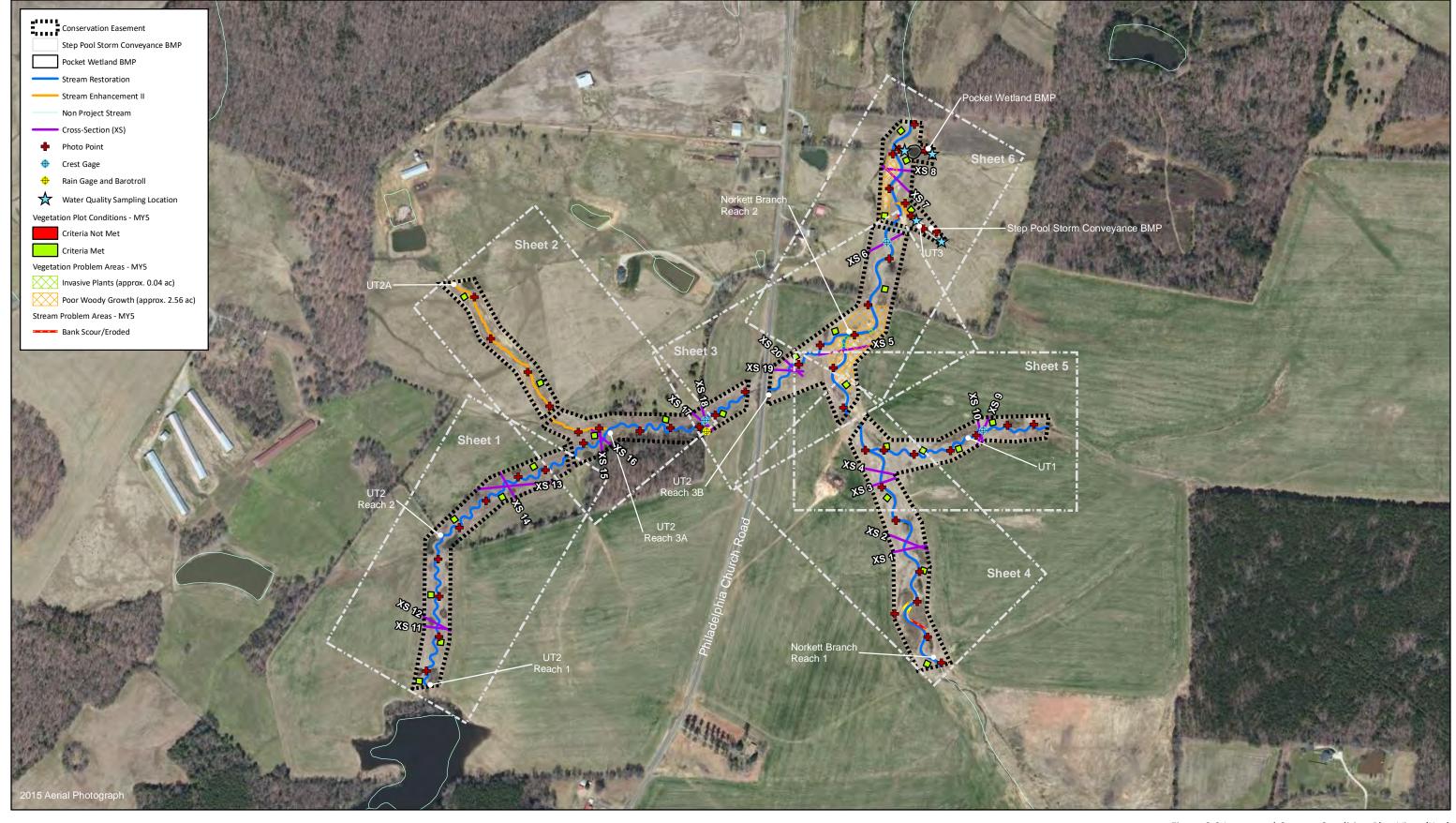
Monitoring Year 5 - 2018

Worldowing rear 5 - 2016									
	Project Info	rmation							
Project Name	Norkett Branch	Stream Mitig	ation Site						
County	Union County								
Project Area (acres)	31.6								
Project Coordinates (latitude and longitude)	34°52'47.56"N,	80°22'9.19"V	/						
Projec	ct Watershed Sur	nmary Infor	mation						
Physiographic Province	Carolina Slate B	elt of the Pie	dmont Physiog	raphic Prov	ince				
River Basin	Yadkin		, , ,						
USGS Hydrologic Unit 8-digit	03040105								
USGS Hydrologic Unit 14-digit	030401050810	20							
DWQ Sub-basin	03-07-14								
Project Drainage Area (acres)	2,034								
Project Drainage Area Percentage of Impervious Area	<1%								
CGIA Land Use Classification	43% forested, 2	9% managed	herbaceous co	over. 28% cu	Itivated land				
	Reach Summary								
	Norkett	Norkett							
Parameters	Branch Reach	Branch Reach 2	UT1	UT2	UT2A	UT3			
Length of reach (linear feet) - Post-Restoration ¹	2,369	1,499	1,198	4,175	1,378	170			
Drainage area (acres)	1490	2034	48	457	72	28			
Drainage area (sqmi)	2.3	3.2	0.08	0.72	0.11	0.04			
NCDWQ stream identification score	43.75	41.5	32.25	35.75	23;30.75	25.75			
NCDWQ Water Quality Classification				VS-V	- /				
Morphological Desription (stream type)	Р	Р	Р						
Evolutionary trend (Simon's Model) - Pre- Restoration	III	III/IV	11/111	II, IV	IV	11/111			
			Floodnlain S	Soil Types for Site					
Underlying mapped soils	Badin channe	ery silt loam	Badin chann loa		Cid channery silt loam	Secrest-Cid complex			
Drainage class	well-dr	ained	well-dr	ained	well-drained with moderate shrink-swell potential	well-drained			
Soil Hydric status	N		N		N	Υ			
Slope	2-8	%	2-8	%	1-5%	0-3%			
FEMA classification	AE	AE	N/A	N/A	N/A	N/A			
Native vegetation community		-	Piedmont Bo	ttomland Fo	orest				
Percent composition exotic invasive vegetation - Post-Restoration				0%					
rost nestoration	Regulatory Cor	siderations							
Regulation	Applicable?	Resolved?		Supporti	ng Documentati	on			
Waters of the United States - Section 404	X	Х	USACE Nation	•	it No.27 and DWO				
Waters of the United States - Section 401	Х	X	Quality Certif						
Division of Land Quality (Dam Safety)	N/A	N/A	N/A						
Endangered Species Act	X	X	Norkett Branch Mitigation Plan; Wildlands determined "n effect" on Union County listed endangered species.						
Historic Preservation Act	х	Х	No historic resources were found to be impacted (letter from SHPO dated 8/20/2012).						
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	N/A	N/A	N/A						
FEMA Floodplain Compliance	Х	Х	CLOMR and L	OMR Appro	ved				
Essential Fisheries Habitat	N/A	N/A	N/A						
Loosential Figures Habitat	IN/A	N/A	11/14						

Total stream length does not exclude easement crossings.

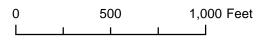
Table 5. Monitoring Component Summary

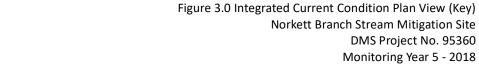
Norkett Branch Stream Mitigation Site DMS Project No. 95360


Monitoring Year 5 - 2018

					Q	uantity/ Length by Rea	ch					
Parameter	Monitoring Feature	Norkett Branch Reach 1	Norkett Branch Reach 2	UT1	UT2 Reach 1	UT2 Reach 2	UT2 Reach 3A	UT2 Reach 3B	UT3	Storm Water BMPs	Frequency	
	Riffle Cross Section	3	2	1	1	2	1	1	N/A	N/A	Annual	
	Pool Cross Section	2	1	1	1	2	1	1	N/A	N/A	Aillidei	
Pattern	Pattern		N/A									
Profile	Longitudinal Profile		N/A									
Substrate	Reach Wide (RW) / Riffle (RF) 100 Pebble Count	RW-1, RF-3	RW-1, RF-2	RW-1, RF-1	RW-1, RF-1	RW-1, RF-2	RW-1, RF-1	RW-1, RF-1	N/A	N/A	Annual	
Stream Hydrology	Crest Gage		i	1			1	•	N/A	N/A	Quarterly	
Wetland Hydrology	Groundwater Gages					N/A					N/A	
Vegetation ¹	CVS Level 2					26					Annual	
Visual Assessment	All Streams	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Annual	
Exotic and nuisance vegetation												
Project Boundary												
Reference Photos ²	Photographs					51					Annual	

¹A deviation from the vegetation plot quantity indicated in the Mitigation Plan is due to a smaller than expected planted area.


²Additional reference photo locations were added for site documentation to exceed quantity indicated in the Mitigation Plan.



DMS Project No. 95360

Figure 3.1 Integrated Current Condition Plan View (Sheet 1 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

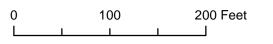
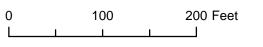
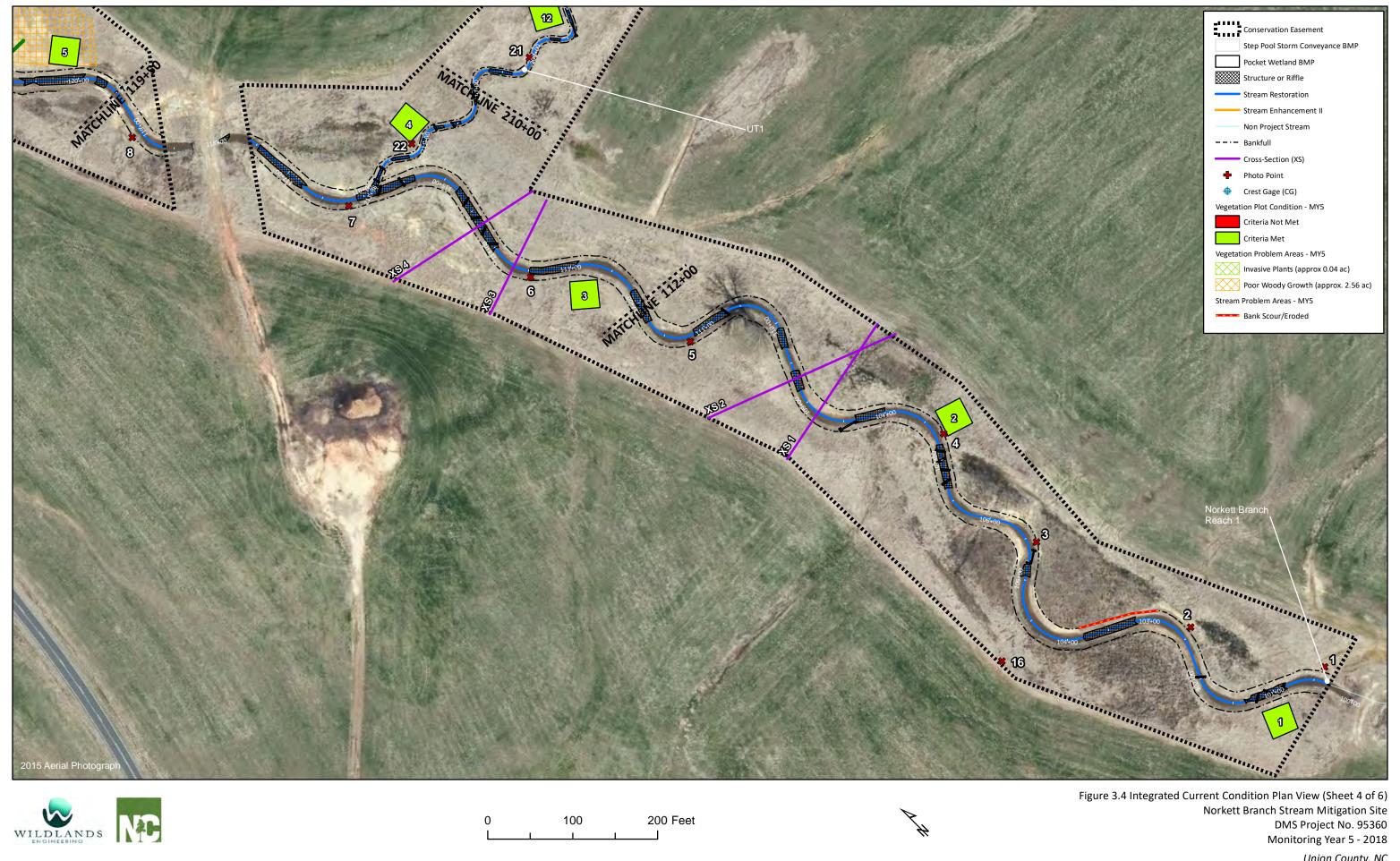


Figure 3.2 Integrated Current Condition Plan View (Sheet 2 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

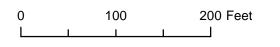
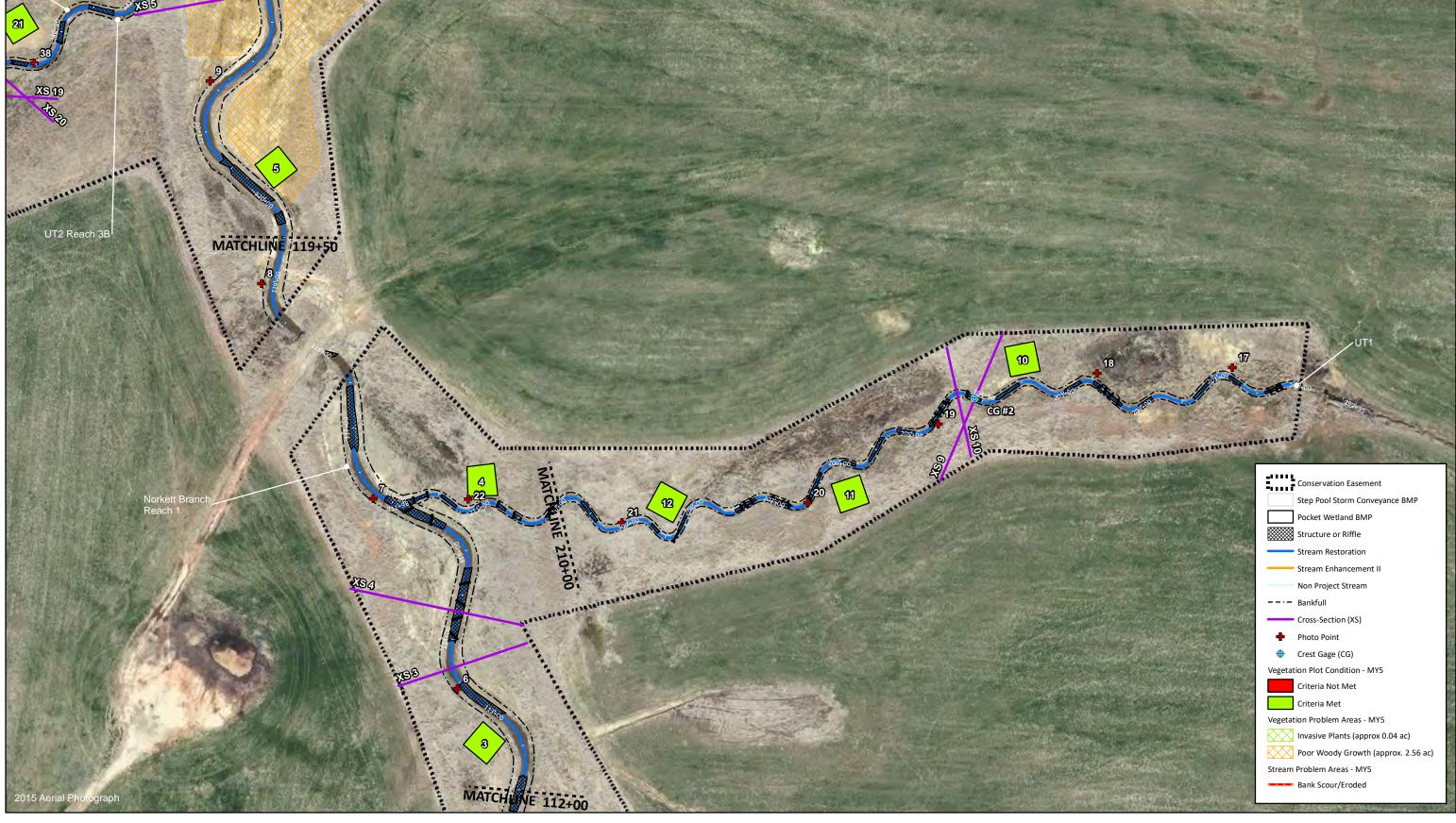
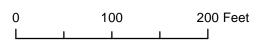
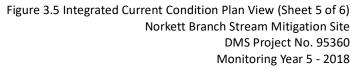
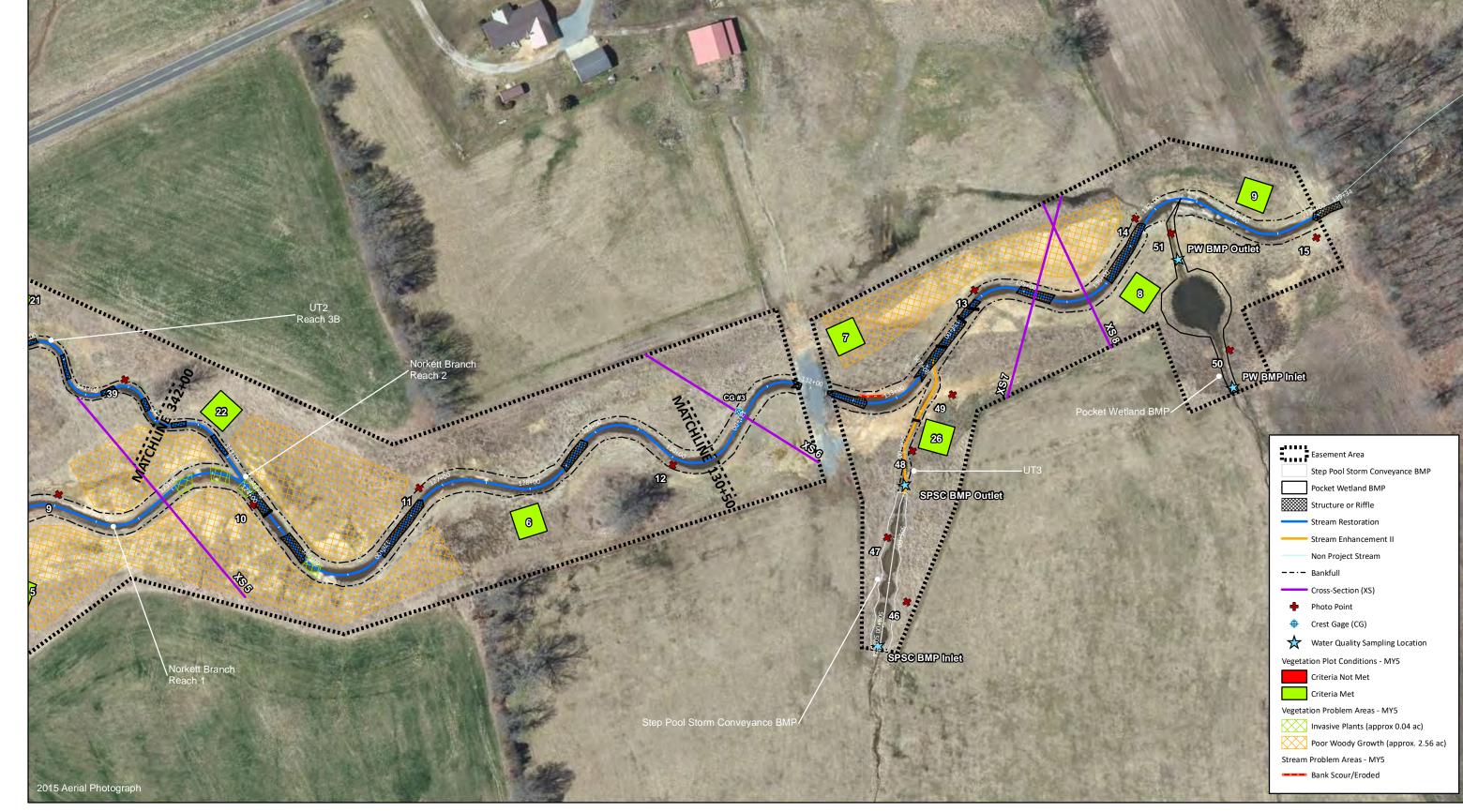


Figure 3.3 Integrated Current Condition Plan View (Sheet 3 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018









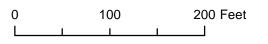


Figure 3.6 Integrated Current Condition Plan View (Sheet 6 of 6) Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

Table 6a. Visual Stream Morphology Stability Assessment Table

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

Norkett Branch Reach 1 - 2,313 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	17	17			100%			
	3. Meander Pool	Depth Sufficient	16	16			100%			
1. Bed	Condition	Length Appropriate	16	16			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	17 17				100%			
	4. Inalweg Position	Thalweg centering at downstream of meander bend (Glide)	17	17			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	97	98%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
			•	Totals	1	97	98%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	2	2			100%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6b. Visual Stream Morphology Stability Assessment Table

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

Norkett Branch Reach 2 - 1,513 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	10	10			100%			
	3. Meander Pool Condition	Depth Sufficient	11	11			100%			
1. Bed		Length Appropriate	11	11			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	12	12			100%			
	4. I naiweg Position	Thalweg centering at downstream of meander bend (Glide)	12	12			100%			
			•							
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	27	99%	100%	100%	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
				Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	1	1			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6c. Visual Stream Morphology Stability Assessment Table

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT1 - 1,212 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	27	27			100%			
	3. Meander Pool	Depth Sufficient	26	26			100%			
1. Bed	Condition	Length Appropriate	27	27			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	27	27			100%			
	4. Inalweg Position	Thalweg centering at downstream of meander bend (Glide)	27	27			100%			
							•			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
				Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	1	1			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6d. Visual Stream Morphology Stability Assessment Table

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT2 Reach 1 - 1,033 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
1. Bed	2. Riffle Condition	Texture/Substrate	24	24			100%			
	3. Meander Pool Condition	Depth Sufficient	24	24			100%			
		Length Appropriate	24	24			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	25	25			100%			
	4. Malweg Position	Thalweg centering at downstream of meander bend (Glide)	25	25			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
				Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6e. Visual Stream Morphology Stability Assessment Table

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT2 Reach 2 - 1,416 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	31	31			100%			
	3. Meander Pool Condition	Depth Sufficient	31	31			100%			
1. Bed		Length Appropriate	33	33			100%			
	4 Thehan Desiring	Thalweg centering at upstream of meander bend (Run)	34	34			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	34	34			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
			l .	Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	4	4			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6f. Visual Stream Morphology Stability Assessment Table

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT2 Reach 3A - 1,041 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	25	25			100%			
	3. Meander Pool	Depth Sufficient	24	24			100%			
1. Bed	Condition	Length Appropriate	24	24			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	25	25			100%			
	4. Thatweg Position	Thalweg centering at downstream of meander bend (Glide)	25	25			100%			
						1				
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
				Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	1	1			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6g. Visual Stream Morphology Stability Assessment Table

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT2 Reach 3B - 668 LF

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	10	10			100%			
_	3. Meander Pool	Depth Sufficient	10	10			100%			
1. Bed	Condition	Length Appropriate	10	10			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	11	11			100%			
	4. Thatweg Position	Thalweg centering at downstream of meander bend (Glide)	11	11			100%			
		•	•							
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	100%	100%	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	100%	100%	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	100%	100%	100%
				Totals	0	0	100%	100%	100%	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	2	2			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 7. Vegetation Condition Assessment Table

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

Planted Acreage

29.9

Vegetation Category	Definitions	Mapping Threshold (acres)	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	0	0.0	0%
Low Stem Density Areas ¹	Woody stem densities clearly below target levels based on MY3, 4, 5, or 7 stem count criteria.	0.1	0	0.0	0%
		Total	0	0.0	0%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0	4	2.6	9%
		Cumulative Total	4	2.6	9%

Easement Acreage 31.6

Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Planted Acreage
Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000	4	0.0	0%
Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	0	0	0%

¹Acreage calculated from vegetation plots monitored for site.

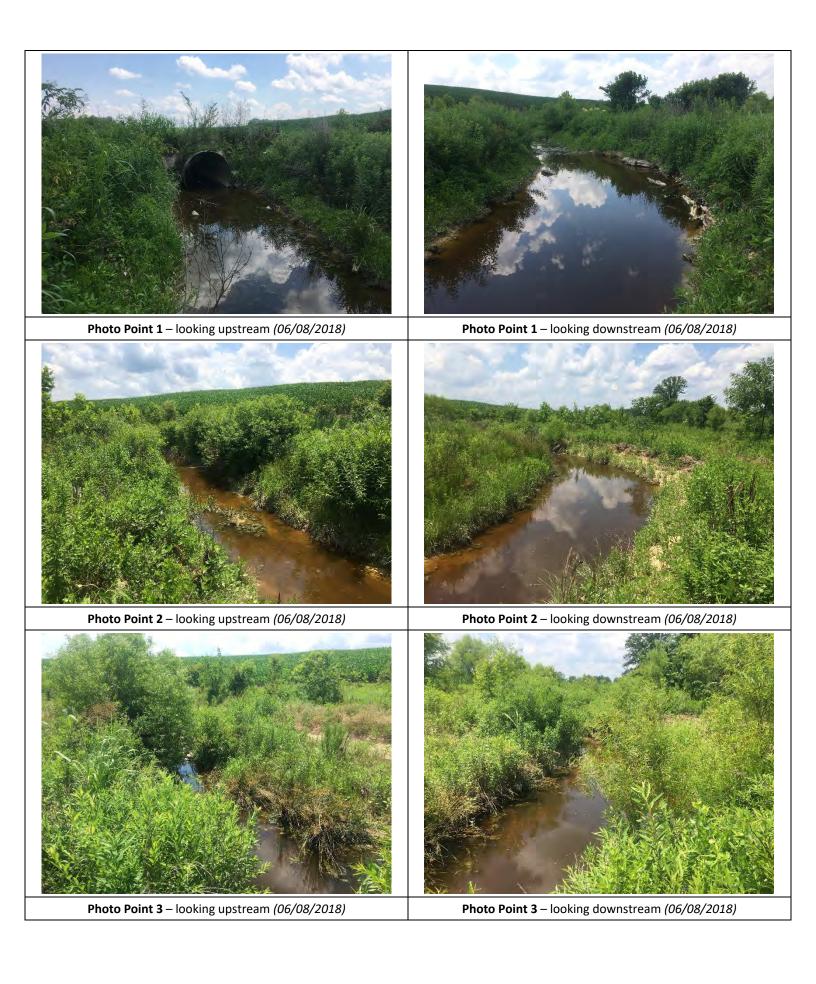


Photo Point 31 – looking downstream (06/07/2018)

Photo Point 32 – looking upstream (07/27/2018)

Photo Point 32 – looking downstream (07/27/2018)

Photo Point 33 – looking upstream (06/07/2018)

Photo Point 33 – looking downstream (06/07/2018)

Photo Point 40 – looking upstream (06/07/2018)

Photo Point 40 – looking downstream (06/07/2018)

Photo Point 41 – looking upstream (06/07/2018)

Photo Point 41 – looking downstream (06/07/2018)

Photo Point 42 – looking upstream (06/07/2018)

Photo Point 42 – looking downstream (06/07/2018)

Photo Point 43 – looking downstream (06/07/2018)

Photo Point 45 – looking upstream (06/07/2018)

Photo Point 45 – looking downstream (06/07/2018)

Photo Point 49 – looking upstream (06/08/2018)

Photo Point 49 – looking downstream (06/08/2018)

Photo Point 50 – looking downstream (06/08/2018)

Photo Point 51 – looking upstream (06/08/2018)

Vegetation Plot 26 – (08/06/2018)

Table 8. Vegetation Plot Criteria Attainment

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Plot	MY5 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Υ	
4	Υ	
5	Υ	
6	Υ	
7	Υ	
8	Υ	
9	Υ	
10	Υ	
11	Υ	
12	Υ	
13	Υ	100%
14	Υ	100%
15	Υ	
16	Υ	
17	Υ	
18	Υ	
19	Υ	
20	Υ	
21	Υ	
22	Υ	
23	Υ	
24	Υ	
25	Y	
26	Y	

Table 9. CVS Vegetation Plot Metadata

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

- P P	lan Eckardt	
Date Prepared		9/19/2018 11:39
	cvs-eep-entrytool-v2.3.1 MY5.mdb	
database location	Q:\ActiveProjects\005-02134 Norkett Branch FDP\Monitoring\Monitoring Year 5\Vegetation Assessment	
computer name	IAN-PC	
file size		46764032
DESCRIPTION OF WORKSHEETS IN TH	IIS DOCUMENT	
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.	
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.	
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.	
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).	
Vigor	Frequency distribution of vigor classes for stems for all plots.	
Vigor by Spp	Frequency distribution of vigor classes listed by species.	
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.	
Damage by Spp	Damage values tallied by type for each species.	
Damage by Plot	Damage values tallied by type for each plot.	
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.	
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.	
PROJECT SUMMARY		
Project Code		95360
project Name	Norkett Branch Stream Mitigation Site	
Description		
River Basin		
length(ft)		10706
stream-to-edge width (ft)		50
area (sq m)		127880.66
Required Plots (calculated)		22
Sampled Plots		26

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

			Current Plot Data (MY5 2018) SType																				
Scientific Name	Common Nome	Consider Towns	9536	0-WEI-	0001	9536	0-WEI-	0002	9536	0-WEI-	0003	9536	0-WEI-	0004	9536	0-WEI-	0005	9536	0-WEI-	0006	9536	0-WEI-	0007
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree				1	1	1	1	1	1	2	2	2									
Betula nigra	river birch	Tree	3	3	5	1	1	1	1	1	1				3	3	3	2	2	3	2	2	2
Carya sp.	hickory	Tree																					I
Celtis laevigata	sugarberry	Tree																					
Cephalanthus occidentalis	common buttonbush	Shrub																					
Cercis canadensis	eastern redbud	Tree												1	1	1	1						
Cornus florida	flowering dogwood	Tree																					
Diospyros virginiana	common persimmon	Tree						5															
Fraxinus pennsylvanica	green ash	Tree	2	2	2	5	5	6							1	1	1	4	4	5	3	3	3
Hamamelis virginiana	American witchhazel	Tree																					
Liquidambar styraciflua	sweetgum	Tree																					
Liriodendron tulipifera	tuliptree	Tree																					1
Pinus rigida	pitch pine	Tree									1												i
Pinus strobus	eastern white pine	Tree																					
Pinus	pine	Tree																					
Platanus occidentalis	American sycamore	Tree	5	5	5	6	6	6	7	7	8	8	8	8	3	3	3	3	3	3	2	2	2
Populus deltoides	eastern cottonwood	Tree																					
Quercus michauxii	swamp chestnut oak	Tree																					
Quercus phellos	willow oak	Tree													1	1	1	1	1	1			I
Quercus rubra	northern red oak	Tree	2	2	2				3	3	3	1	1	1									
Salix	unknown willow	Shrub or Tree																					
Salix nigra	black willow	Tree																		1			
Sambucus canadensis	common elderberry	Shrub										1	1	2									
Taxodium distichum	bald cypress	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
Unknown		Shrub or Tree																					
		Stem count	12	12	14	13	13	19	12	12	14	12	12	14	9	9	9	10	10	13	7	7	7
		size (ares)		1			1			1		1			1			1			1		
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	4	4	4	4	4	5	4	4	5	4	4	5	5	5	5	4	4	5	3	3	3
	·	Stems per ACRE	486	486	567	526	526	769	486	486	567	486	486	567	364	364	364	405	405	526	283	283	283

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

			Current Plot Data (MY5 2018) Process Pr																				
Scientific Name	Common Name	Consider Toma	9536	0-WEI-	8000	9536	0-WEI-	0009	9536	0-WEI-	0010	9536	0-WEI-	0011	9536	0-WEI-	0012	9536	0-WEI-	0013	9536	0-WEI-	0014
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т
Acer rubrum	red maple	Tree			1																		1
Betula nigra	river birch	Tree	3	3	3				2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
Carya sp.	hickory	Tree																					ı
Celtis laevigata	sugarberry	Tree																					
Cephalanthus occidentalis	common buttonbush	Shrub																					
Cercis canadensis	eastern redbud	Tree							1	1	1	1	1	1									
Cornus florida	flowering dogwood	Tree																					
Diospyros virginiana	common persimmon	Tree																					
Fraxinus pennsylvanica	green ash	Tree	5	5	6	2	2	5	2	2	2	6	6	6	1	1	1	2	2	2	3	3	3
Hamamelis virginiana	American witchhazel	Tree																					
Liquidambar styraciflua	sweetgum	Tree																		1			
Liriodendron tulipifera	tuliptree	Tree	1	1	1				2	2	2												1
Pinus rigida	pitch pine	Tree																					
Pinus strobus	eastern white pine	Tree																					
Pinus	pine	Tree						1									1						
Platanus occidentalis	American sycamore	Tree	4	4	4	6	6	7	2	2	2	4	4	4	7	7	7	4	4	4	2	2	2
Populus deltoides	eastern cottonwood	Tree																					
Quercus michauxii	swamp chestnut oak	Tree	1	1	1																		
Quercus phellos	willow oak	Tree				2	2	2										1	1	1			
Quercus rubra	northern red oak	Tree	1	1	1										1	1	1	1	1	1	1	1	1
Salix	unknown willow	Shrub or Tree																					
Salix nigra	black willow	Tree												8									I
Sambucus canadensis	common elderberry	Shrub																					<u> </u>
Taxodium distichum	bald cypress	Tree	2	2	2																		
Ulmus alata	winged elm	Tree						5															
Ulmus americana	American elm	Tree																		6			
Unknown		Shrub or Tree																					
		Stem count	17	17	19	10	10	20	9	9	9	12	12	20	10	10	11	9	9	16	7	7	7
		size (ares)		1			1			1		1			1				1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	7	7	8	3	3	5	5	5	5	4	4	5	4	4	5	5	5	7	4	4	4
	Stems per ACRE	688	688	769	405	405	809	364	364	364	486	486	809	405	405	445	364	364	647	283	283	283	

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

			Current Plot Data (MY5 2018) 95360-WEI-0015 95360-WEI-0016 95360-WEI-0017 95360-WEI-0018 95360-WEI-0019 95360-WEI-0020 95360-WEI-0022 PnoLS P-ali T PnoLS																				
Scientific Name	Common Name	Consider Toma	9536	0-WEI-	0015	9536	0-WEI-	0016	9536	0-WEI-	0017	9536	0-WEI-	0018	9536	0-WEI-	0019	9536	0-WEI-	0020	9536	0-WEI-	0021
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T
Acer rubrum	red maple	Tree																					
Betula nigra	river birch	Tree	1	1	1				1	1	1				1	1	1	1	1	1			
Carya sp.	hickory	Tree																					
Celtis laevigata	sugarberry	Tree																					
Cephalanthus occidentalis	common buttonbush	Shrub																					
Cercis canadensis	eastern redbud	Tree				1	1	1										1	1	1	4	4	4
Cornus florida	flowering dogwood	Tree																					
Diospyros virginiana	common persimmon	Tree																					
Fraxinus pennsylvanica	green ash	Tree	4	4	4	3	3	3	3	3	5	3	3	3	3	3	4	3	3	3			
Hamamelis virginiana	American witchhazel	Tree																			2	2	2
Liquidambar styraciflua	sweetgum	Tree									4						3			1		1	
Liriodendron tulipifera	tuliptree	Tree													1	1	1				1	1	1
Pinus rigida	pitch pine	Tree																					
Pinus strobus	eastern white pine	Tree																					
Pinus	pine	Tree																					2
Platanus occidentalis	American sycamore	Tree	3	3	3	1	1	1	4	4	4	4	4	4	4	4	4	4	4	4	6	6	6
Populus deltoides	eastern cottonwood	Tree																					
Quercus michauxii	swamp chestnut oak	Tree													1	1	1	1	1	1		1	
Quercus phellos	willow oak	Tree	1	1	1	1	1	1	2	2	2	1	1	1	1	1	1	2	2	2	1	1	1
Quercus rubra	northern red oak	Tree	1	1	1	1	1	1	2	2	2	1	1	1	1	1	1				1	1	1
Salix	unknown willow	Shrub or Tree																					
Salix nigra	black willow	Tree																					
Sambucus canadensis	common elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree															1						
Ulmus alata	winged elm	Tree						2			4						5			3		1	
Ulmus americana	American elm	Tree																					
Unknown		Shrub or Tree																					
		Stem count	10	10	10	7	7	9	12	12	22	9	9	9	12	12	22	12	12	16	15	15	17
		size (ares)		1			1			1			1		1			1			1		
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	5	5	6	5	5	7	4	4	4	7	7	10	6	6	8	6	6	7
	Stems per					283	283	364	486	486	890	364	364	364	486	486	890	486	486	647	607	607	688

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

								Cur	rent Plo	t Data	(MY5 2	018)					
Scientific Name	Common Name	Species Type	9536	0-WEI-	0022	9536	0-WEI-	0023	9536	0-WEI-	0024	9536	0-WEI-	0025	9536	0-WEI-	0026
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T
Acer rubrum	red maple	Tree															
Betula nigra	river birch	Tree	1	1	1	1	1	1	1	1	1	1	1	1			
Carya sp.	hickory	Tree															
Celtis laevigata	sugarberry	Tree															
Cephalanthus occidentalis	common buttonbush	Shrub															
Cercis canadensis	eastern redbud	Tree				1	1	1				1	1	1			
Cornus florida	flowering dogwood	Tree										1	1	1			
Diospyros virginiana	common persimmon	Tree															
Fraxinus pennsylvanica	green ash	Tree	6	6	6	3	3	3	3	3	3	3	3	3	4	4	4
Hamamelis virginiana	American witchhazel	Tree													1	1	1
Liquidambar styraciflua	sweetgum	Tree			1												
Liriodendron tulipifera	tuliptree	Tree				1	1	1				1	1	1			1
Pinus rigida	pitch pine	Tree															
Pinus strobus	eastern white pine	Tree															
Pinus	pine	Tree						2									
Platanus occidentalis	American sycamore	Tree	5	5	5	3	3	3	4	4	4	2	2	2	2	2	2
Populus deltoides	eastern cottonwood	Tree															
Quercus michauxii	swamp chestnut oak	Tree										1	1	1			
Quercus phellos	willow oak	Tree	2	2	2	2	2	2	1	1	1	1	1	1			
Quercus rubra	northern red oak	Tree				2	2	2	1	1	1	1	1	1	2	2	2
Salix	unknown willow	Shrub or Tree															
Salix nigra	black willow	Tree															
Sambucus canadensis	common elderberry	Shrub			1												
Taxodium distichum	bald cypress	Tree															
Ulmus alata	winged elm	Tree															
Ulmus americana	American elm	Tree															
Unknown		Shrub or Tree															
	Stem cour		14	14	16	13	13	15	10	10	10	12	12	12	9	9	10
	size (ares						1			1			1			1	
size (ACRES				0.02			0.02			0.02			0.02			0.02	
Species count				4	6	7	7	8	5	5	5	9	9	9	4	4	5
		Stems per ACRE	567	567	647	526	526	607	405	405	405	486	486	486	364	364	405

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

T: Total stems including volunteers

Table 10. Planted and Total Stem Counts (Species by Plot with Annual Means)

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

										P	nnual	Sumarr	у							
Scientific Name	Common Name	Species Type	MY	5 (8/20	18)	MY	4 (8/20	17)	MY	3 (6/20	16)	MY	2 (9/20	15)	MY	1 (9/20	14)	MY	/0 (4/20	14)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т
Acer rubrum	red maple	Tree	4	4	5	4	4	7	4	4	6	4	4	4						
Betula nigra	river birch	Tree	29	29	32	27	27	27	27	27	27	27	27	27	25	25	25	32	32	32
Carya sp.	hickory	Tree									6									
Celtis laevigata	sugarberry	Tree						6							1	1	1	7	7	7
Cephalanthus occidentalis	common buttonbush	Shrub						2	1	1	1	1	1	2						
Cercis canadensis	eastern redbud	Tree	11	11	12	10	10	10	12	12	12	14	14	14	25	25	25	42	42	42
Cornus florida	flowering dogwood	Tree	1	1	1				8	8	8	10	10	10	48	48	48	75	75	75
Diospyros virginiana	common persimmon	Tree			5			3			2			3						
Fraxinus pennsylvanica	green ash	Tree	74	74	83	75	75	83	76	76	82	73	73	75	63	63	63	67	67	67
Hamamelis virginiana	American witchhazel	Tree	3	3	3	3	3	3	3	3	3	3	3	3	7	7	7	8	8	8
Liquidambar styraciflua	sweetgum	Tree			10			9						5						
Liriodendron tulipifera	tuliptree	Tree	7	7	8	6	6	6	9	9	16	11	11	11	24	24	24	59	59	59
Pinus rigida	pitch pine	Tree						2												
Pinus strobus	eastern white pine	Tree						1												
Pinus	pine	Tree			7															
Platanus occidentalis	American sycamore	Tree	105	105	107	100	100	100	105	105	106	106	106	106	67	67	67	57	57	57
Populus deltoides	eastern cottonwood	Tree						1			1			1						
Quercus michauxii	swamp chestnut oak	Tree	4	4	4	7	7	7	7	7	7	7	7	7	18	18	18	36	36	36
Quercus phellos	willow oak	Tree	20	20	20	17	17	17	19	19	19	20	20	20	34	34	34	27	27	27
Quercus rubra	northern red oak	Tree	23	23	23	19	19	19	20	20	20	23	23	23	24	24	24	24	24	24
Salix	unknown willow	Shrub or Tree						5												
Salix nigra	black willow	Tree			9						7			1						<u> </u>
Sambucus canadensis	common elderberry	Shrub	1	1	2	1	1	1	2	2	3	2	2	2	10	10	11	13	13	13
Taxodium distichum	bald cypress	Tree	2	2	3							1	1	1						
Ulmus alata	winged elm	Tree			19			15			17			6						<u> </u>
Ulmus americana	American elm	Tree			6															
Unknown		Shrub or Tree						1												<u> </u>
		Stem count	284	284	359	269	269	325	293	293	343	302	302	321	346	346	347	447	447	447
		size (ares)		26			26			26			26			26			26	
		size (ACRES)		0.64			0.64			0.64			0.64			0.64			0.64	
		Species count		13	19	11	11	21	13	13	18	14	14	19	12	12	12	12	12	12
		Stems per ACRE	442	442	559	419	419	506	456	456	534	470	470	500	539	539	540	696	696	696

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Volunteer species included in total

PnoLS: Planted Stems excluding live stakes

P-all: All planted stems

* Supplemental planting was performed in MY2 (February 2015) included 6,000 stems or approximately 37% of MY1 stem total. Supplemental planting performed in MY5 (January 2018) included 400 stems or approximately 3% of MY5 stem total.

T: Total stems including volunteers

APPENDIX 4. Morphological Summary Data and Plot	:S

Table 11a. Baseline Stream Data Summary Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Norkett Branch Reaches 1 and 2

Norkett Branch Reaches 1 and 2																Т			
			PRE-RESTORAT	ION CONDITION				REFERENC	E REACHES				DE	SIGN			AS-BUIL	/BASELINE	
Parameter	Gage	Norkett Bra			nch Reach 2		er Creek		ncer Creek		Creek Reach 2		anch Reach 1		ranch Reach 2		nch Reach 1		anch Reach 2
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle	1		T -	T	1		1	T _		1	T	T -		T		1	T	1	1
Bankfull Width (ft)		12.8	21.5	22.0	29.5	10.7	11.2		7.0	13.3	15.2		2.0		23.0	22.5	26.6 >200	25.6	25.7
Floodprone Width (ft) Bankfull Mean Depth	∤ ⊦	35	58	72	85	60	114+		81 2.0		50	48	>110	61	>115	>200		>200	>200
Bankfull Mean Depth Bankfull Max Depth	 	1.7	1.8 3.2	1.4 2.3	2.4 2.9	1.6 2.1	2.6		0	1.1	1.3 2.1		1.8 2.8		2.8	1.6 2.6	1.8 3.3	1.8 3.0	2.0 3.3
	-/-	3.1											0.6		43.2		44.6		
Bankfull Cross-sectional Area (ft²)	n/a	28.1	35.6	40.6	52.8	17.8	19.7		7.7	16.5	17.5			1		38.8		46.7	50.8
Width/Depth Ratio	 	5.9 2.1	13.0	9.2 2.9	21.4 3.3	5.8 5.5	7.1		.1.6	10.1	13.9		1.9		12.2	13.1	16.7	13.0	14.1
Entrenchment Ratio	-		4.5	1.3	1.6		10.2 1.0		0		2.5 1.0	2.2	>5.0 1.0	2.2	>5.0		2.2 0		2.2 1.0
Bank Height Ratio D50 (mm)	-	1.0	.6	1.3			1.0	1	0		1.0					18.4	59.6	7.3	9.9
Profile D50 (mm)	<u> </u>	8	.0		.4											18.4	59.0	7.3	9.9
Riffle Length (ft)								1 -				1		1		14	84	19	111
Riffle Slope (ft/ft)		0.0036	0.0039	0.0032	0.0120		0130		140	0.0183	0.0355	0.0018	0.0120	0.0023	0.0180	0.0000	0.0152	0.0009	0.0163
Pool Length (ft)	 	0.0030	0.0033	0.0032	0.0120					-		0.0016		0.0023	0.0160	12	88	51	102
Pool Max Depth (ft)	n/a	4.0	4.0	2.9	4.0		3.3		2.5		1.8	2.8	7.8	2.8	7.9	3.3	5.1	3.5	4.8
Pool Spacing (ft)^		62	300	60	300		1.0	19	42	33.0	93.0	29	163	30	170	67	183	98	172
Pool Volume (ft ³)		02	300		500			23		55.0	35.0		100	50	2,0		100	30	
Pattern	ll							<u> </u>				1		1					
Channel Beltwidth (ft)	П	N	/A	N	/A	38	41	11	27	I N	I/A	35	161	37	168	38	147	38	155
Radius of Curvature (ft)	† F		/A		/A	11	15	6	16		I/A	40	66	41	69	38	65	40	64
Rc:Bankfull Width (ft/ft)	n/a		/A	N		1.0	1.3	0.8	2.3		I/A	1.8	3.0	1.8	3.0	1.7	2.4	1.6	2.5
Meander Length (ft)	.,,-		/A		/A	46	48	37.7	43		I/A	66	264	69	276	167	263	181	277
Meander Width Ratio	i i		/A		/A	3.6	3.7	1.6	3.8		I/A	1.6	7.3	1.6	7.3	1.7	5.5	1.5	6.0
Substrate, Bed and Transport Parameters																			
Ri%/Ru%/P%/G%/S%																			
SC%/Sa%/G%/C%/B%/Be%																			
d16/d35/d50/d84/d95/d100	1 . 1	SC/4.6/8.7/2	28.5/64/2048	SC/SC/0.4/21.1	1/>2048/>2048			-								0.4/3.6/7.4/5	2.3/139.4/362	2.6/6.7/13.0/6	2.6/210.9/>2048
Reach Shear Stress (Competency) lb/ft ²	n/a	0.41	0.44	0.17	0.38							0	.28		0.40	0.27	0.29	0.30	0.32
Max part size (mm) mobilized at bankfull					1							15	5-25		20-35	15	-25	20)-35
Stream Power (Capacity) W/m ²																			
Additional Reach Parameters																			
Drainage Area (SM)		2	.3	3	.2	0	1.96	0.	.01	0	.28	1 :	2.3		3.2		1.3		3.2
Watershed Impervious Cover Estimate (%)	1	<1	% ¹	<1	% ¹			-				<:	1% ¹		<1% 1	<1	.% ¹	<:	1% ¹
Rosgen Classification	1		4		'E5		E4	E	5	C4	1/E4		C4		C5		24		1/E4
Bankfull Velocity (fps)	1	3.5	4.0	2.5	3.5	4.9	5.4	3	3.2	3.5	4.1	1	2.8		3.3	2.6	2.8	2.8	2.9
Bankfull Discharge (cfs)	1	1:			40		97		25	29	32	1	110		140	105	124	130	148
Q-NFF regression	1																		
Q-USGS extrapolation	n/a																		
Q-Mannings] [
Valley Length (ft)] [-		-				-		-		1,	910		1,249	1,	910	1,	249
Channel Thalweg Length (ft) ²		1,9	980	1,5	505			-				2,	369		1,499	2,	369	1,	499
Sinuosity (ft) ³	1	1.	10	1.	10	2	.30	2.	.50	1	.00	1	.24		1.20		.24	1	.20
Water Surface Slope (ft/ft) ²	†	0.0		0.0013	0.0046								0025		0.0036		0031		0033
Bankfull Slope (ft/ft)	 									-				 			0029		0034
bankruii slope (It/It)		-		<u> </u>				1				1		1		0.0	,U_J	0.0	JUJ-1

¹ No impervious land use is present within the project watershed per the CGIA Land Use Classification data set.

SC: Silt/Clay

² Channel Length represented does not include easement breaks.

(---): Data was not provided

N/A: Not Applicable

Table 11b. Baseline Stream Data Summary

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT1 and UT2 Reaches 1 and 2

UT1 and UT2 Reaches 1 and 2											
			PRE-RESTORATION CONDITION	_	REFERENCE REACHES		DESIGN			AS BUILT/ BASELINE	
Parameter	Gage	UT1	UT2 Reach 1	UT2 Reach 2	See Table 11a	UT1	UT2 Reach 1	UT2 Reach 2	UT1	UT2 Reach 1	UT2 Reach 2
		Min Max	Min Max	Min Max	Min	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max
Dimension and Substrate - Riffle	. 1					T	T				
Bankfull Width (ft	4	2.9 8.2	13.6	7.1	4	7.5	8.0	8.0	10.5	9.4	9.0 9.6
Floodprone Width (ft	<u></u>	6 40	29	53	_	16.5 >38	>40	>40	136	144	>200 >200
Bankfull Mean Deptl	<u>n</u>	0.9 1	0.6	0.7	4	0.6	0.6	0.7	0.4	0.5	0.5 0.6
Bankfull Max Deptl	1	1.2 2	1	1.5	See Table 11a	0.9	0.9	1.0	0.8	1.2	1.1 1.2
Bankfull Cross-sectional Area (ft ²		2.6 8.6	7.9	5.1	_	4.6	4.6	5.3	4.5	4.5	5.2 5.3
Width/Depth Ratio	_1	2.6 8.6	23.4	9.8	4	12.2	13.9	12.1	24.5	19.8	15.3 17.6
Entrenchment Ratio		2.2 4.9	>7	>8	4	2.2 >5	>5	>5	>2.2	>2.2	>2.2
Bank Height Ratio)	1.5 2.4	1	1 1.7		1.0	1.0	1.0	1.0	1.0	1.0
D50 (mm)	SC	7.3	7.3					20.9	19.5	20.1 27.4
Profile	vI	1		T T		T			7 39		
Riffle Length (ft Riffle Slope (ft/ft		0.047	0.000	0.005	4				, 55	7 34	6 27
		0.017 0.054	0.009 0.032	0.006	Con Table 11a	0.013 0.045	0.01 0.032	0.013 0.028	0.007 0.044	0.006 0.037	0.009 0.039
Pool Length (ft Pool Max Depth (ft		1.4 1.7	1.2	2.5	See Table 11a		0.9 2.4	1.0 2.8	12 69 1.2 2.5	11 35	11 45
Pool Spacing (ft)		1.4 1.7 61 295	1.3 190	51 130	4	0.9 2.6 10 56	0.9 2.4 10 56	10 56	30 58	1.5 2.6 21 64	1.5 2.5 22 71
	,	01 293	190	31 130		10 36	10 30	10 30	30 38	21 64	22 71
Pool Volume (ft ³)							1		<u> </u>	
Pattern Channel Bellewidth /ft	al .	N/A	N/A N/A	36.0		12 55	13 44	13 44	12 40	10 42	12 52
Channel Beltwidth (ft Radius of Curvature (ft	<u></u>	N/A N/A	N/A N/A N/A N/A	26.9 49.5 6.92 33.39	-	12 55 12 23	13 44 13.0 24.0	13 44 13 24	13 49 14 23	10 42 15 21	12 52 14 22
Rc:Bankfull Width (ft/ft	<u></u>	N/A N/A	N/A N/A	0.98 4.73	See Table 11a	1.6 3	1.6 3.0	1.6 3	1.3 2.2	1.6 2.2	1.6 2.3
Meander Length (ft	4	N/A N/A	N/A N/A	83.5 141.4	See Table 11a	23 90	24.0 96.0	24 96	61 88	45 92	44 83
Meander Width Ratio	-	N/A N/A	N/A N/A	3.8 7.01	4	1.6 7.3	1.6 5.5	1.6 5.5	1.2 4.7	1.0 4.4	1.3 5.4
Substrate, Bed and Transport Parameters	<u> </u>	N/A	N/A N/A	3.6 7.01		1:0 7:3	1.0 3.3	1.0 3.3	1.2 4.7	1.0 4.4	1.5 5.4
Ri%/Ru%/P%/G%/S%	6										
SC%/Sa%/G%/C%/B%/Be%	_		+	+							
d16/d35/d50/d84/d95/d100	_1	SC/SC/SC/SC/0.77/9.38/>2048	SC/SC/7.3/47.7/85.7/>2048	SC/SC/7.3/47.7/85.7/>2048	See Table 11a			+	SC/1.0/12.7/55.3/90/256	SC/7.1/12.2/28.5/42.9/90	2.4/11.6/20.7/56.1/86.7/180
Reach Shear Stress (Competency) lb/ft	n/a	0.57 0.82	0.14	0.42	See Tuble 11u	0.38	0.18	0.27	0.27	0.16	0.21 0.23
Max part size (mm) mobilized at bankful	_	0.82	0.14	0.42		20-35	10-20	15-25	15-25	10-20	15-25
· · · · ·	2					20-33	10-20	13-23	15-25	10-20	15-25
Stream Power (Capacity) W/m Additional Reach Parameters	<u> </u>										L I
Drainage Area (SM	VI .	0.08	0.40	0.48	1	0.08	0.15	0.22	0.08	0.15	0.22
	-		<1% ¹	<1% ¹	4		<1% ¹	<1% ¹		<1% ¹	<1% ¹
Watershed Impervious Cover Estimate (%	_	<1% ¹ E6			See Table 5a	<1% 1			<1% 1		<1% ⁻
Rosgen Classification	1		C/E4	E4	See Table 3a	C/E6	C/E4	C/E4	C4	C4	
Bankfull Velocity (fps	<u>}</u>	3.3 4.2	1.4	3.4	4	2.6	2.4	3.2	2.1	1.6	1.9 2.0
Bankfull Discharge (cfs	4	12	11	17		12	11	17	10	/	10 11
Q-NFF regression Q-USGS extrapolation	=		-								
Q-USGS extrapolation Q-Manning	, -										
Valley Length (ft	1	840	820	1156		998	866	1108	998	866	1108
, ,	2	840		+	-	1,198	1,039	1,440	1,198		
Channel Thalweg Length (ft)	2		820	1,272		,		,	,	1,039	1,440
Sinuosity (ft)	-	1.0	1.0	1.1	See Table 5a	1.20	1.20	1.30	1.20	1.20	1.30
Water Surface Slope (ft/ft)	2	0.15	0.004	0.012	j	0.010	0.005	0.007	0.011	0.006	0.007
Bankfull Slope (ft/ft)								0.011	0.006	0.007

¹ No impervious land use is present within the project watershed per the CGIA Land Use Classification data set.

² Channel Length represented does not include easement breaks.

(---): Data was not provided
N/A: Not Applicable
SC: Silt/Clay

Table 11c. Baseline Stream Data Summary

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT2 Reaches 3A and 3B

Red STORM Section Se	UT2 Reaches 3A and 3B												
Min			RE-RESTORATION CONDITION	REFERENCI	E REACHES		DE	SIGN			AS BUILT	/BASELINE	
	Parameter	Gage											
Section West (Principate W			Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Floodgrone Width (Int) Bankfull Mate Depth Bankfull Mate Dep													
Bankfull Mean Depth Bankfull Mean Depth													
See Table 118				_									
San Multi-Cross-ectional Area (IT) Molth Despite Nation See Table 118	·												
Section Sect	· ·	,		See Tal	ble 11a							1	
Same Seption Seption													
1.3 1.8 1.0		4											
Profile Prof													
## Riffle Energh (ft)	-					1	1.0	1	.0				
Biffle Length (ft)			7.32							3:	2.0	3:	3.4
Continue (Pitch Pitch Pi		•		81						1	ı		
Pool Specing (ft) Pool Manufaction (ft) Pool Man		4											
Pool Max Depth (it) Pool Spanne (it) Pool Spanne (it) Pool Spanne (it) Pool Volume (it) Pool Vol			0.014 0.025					1					
Pool bridge Leger High Figure Fig		n/a		See Tal	ble 11a				•				
Patter Channel Beltwidth (tr)		,-											
Channel Beltowith (ft) Radius of Curvature (ft) Research			26 53			12	63	14	77	26	66	38	72
Channel Beltwidth (ft) Reduits of Curvature (ft) N/A N/A 15 63.4 14 27 20 33 14 27 24 31 15 63.4 15 63.4 16 18 8 37 20 61 15 63.4 15 63.4 16 15 63.4 17 22 8.45 16 16 16 17 22 18 16 18 18 17 22 24 31 18 16 18 18 18 18 18 1	Pool Volume (ft ³)												
15 63.4 See Table 11a 15 63.4 See Table 11a 16 3.0 1.8 3.0 1.3 2.6 1.7 2.2 2.2 2.4 3.1 2.2 2.4 3.1 3.0 3.3	Pattern					1			ı	l	ı		•
R.C.Bankfull Width (ft)													
N/A N/A													
N/A N/A		n/a		See Tal	ble 11a								
Substrate, Bed and Transport Parameters													
Risk/Rusk/Psk/Gsk/Ssk Sck/Savk/Csk/Ssk/Ssk Sck/Savk/Csk/Ssk/Ssk/Ssk Sck/Savk/Csk/Ssk/Ssk/Ssk/Ssk Sck/Savk/Csk/Ssk/Ssk/Ssk/Ssk/Ssk/Ssk/Ssk/Ssk/Ssk/S			N/A N/A			1.6	5.5	1.6	5.5	0.8	3.5	1.4	4.4
SC%/5a%/G%/C%/8%/Be%	·	1											
Mark Stress Competency Ibylit													
Reach Shear Stress (Competency) Ib/ft													
Reach Shear Stress (Competency) lb/ft		n/a	SC/SC/7.3/47.7/85.7/>2048	See Tal	ble 11a	_							
Stream Power (Capacity) W/m		, -				-			-				
Additional Reach Parameters	Max part size (mm) mobilized at bankfull					15	25	12	20	1	.7	1	10
Drainage Area (SM) Watershed Impervious Cover Estimate (%) C1% 1 See Table 5a C/E4 C/E4 E4 C4													
Watershed Impervious Cover Estimate (%) Rosgen Classification E4 See Table 5a C/E4 C/E4 E4 C4													
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) 26 33 3.7 3.0 2.1 1.7 1.7 1.7 2.0 1.2 1.7 1													
Sankfull Velocity (fps) Bankfull Discharge (cfs) 26 33 15 20	Watershed Impervious Cover Estimate (%)		<1% 1			<1	.% ¹			<1	% ¹	<1	L% ¹
Bankfull Discharge (cfs) Q-NFF regression Q-USGS extrapolation Q-Mannings Valley Length (ft) Channel Thalweg Length (ft) Sinuosity (ft) Water Surface Slope (ft/ft) O.009 D.006 D.004 D.006				See Ta	ıble 5a			C,	′E4			(C4
Q-NFF regression Q-USGS extrapolation Q-USGS extrapolation Q-Mannings n/a 830 548 830 548 Channel Thalweg Length (ft) Ginusity (ft) Water Surface Slope (ft/ft) Water Surface Slope (ft/ft) Channel Thalweg Length (ft) Channel Th	Bankfull Velocity (fps)		3.7										
Q-USGS extrapolation Q-Mannings n/a 830 548 Valley Length (ft) 1184 830 548 830 548 Channel Thalweg Length (ft) ² 1,303 1,038 658 1,038 658 Sinuosity (ft) ³ 1.1 See Table 5a 1.25 1.20 1.25 1.20 Water Surface Slope (ft/ft) ² 0.009 0.006 0.004 0.006 0.003	Bankfull Discharge (cfs)		26 33				26	3	33	1	.5	2	20
Q-Mannings State of the properties of the pr													
Valley Length (ft) 1184 830 548 830 548 Channel Thalweg Length (ft) ² 1,303 1,038 658 1,038 658 Sinuosity (ft) ³ 1.1 See Table 5a 1.25 1.20 1.25 1.20 Water Surface Slope (ft/ft) ² 0.009 0.006 0.004 0.006 0.003		n/a											
Channel Thalweg Length (ft)² 1,303 1,038 658 1,038 658 Sinuosity (ft)³ 1.1 See Table 5a 1.25 1.20 1.25 1.20 Water Surface Slope (ft/ft)² 0.009 0.006 0.004 0.006 0.003]											
Sinuosity (ft) See Table 5a 1.25 1.20 1.25 1.20 1.25 1.20 1.20 1.25 1.20 1.20 1.25 1.20 1.20 1.25 1.20 1.2	Valley Length (ft)]	1184	_						8	30	5	48
Water Surface Slope (ft/ft) ² 0.009 0.006 0.004 0.006 0.003	Channel Thalweg Length (ft) ²		1,303			1,	038	6	58	1,0	038	6	58
Water Surface Slope (ft/ft)² 0.009 0.006 0.004 0.006 0.003	Sinuosity (ft) ³	1	1.1	See Ta	ıble 5a	1	.25	1.	20	1.	25	1	.20
0.000 0.000		1	0.009	1		0.	006	0.0	004			1	
		1		1						1			

¹ No impervious land use is present within the project watershed per the CGIA Land Use Classification data set.

Channel Length represented does not include easement breaks.

(---): Data was not provided
 N/A: Not Applicable
 SC: Silt/Clay

Table 12a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Norkett Branch Reach 1 and 2

NOIRELL BLAILLI REACH I AHU Z																																
		Cross-	Section 1	1, Norket	tt Branch	Reach 1	l (Pool)			Cross-	Section 2	, Norkett	Branch	Reach 1,	(Riffle)			Cross-S	Section 3	, Norkett	t Branch	Reach 1,	(Pool)			Cross-S	ection 4	, Norkett	Branch	Reach 1,	, (Riffle)	
Dimension ¹	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft) ¹	466.1	466.1	466.1	466.1	466.1	466.0			465.8	465.8	465.8	465.8	465.8	465.9			464.2	464.2	464.2	464.2	464.2	463.9			464.3	464.3	464.3	464.3	464.3	464.3		
Low Bank Elevation (ft)	466.07	466.07	466.07	466.07	466.07	466.07			465.8	465.8	465.8	465.8	465.8	465.8			464.2	464.2	464.2	464.2	464.2	464.2			464.3	464.3	464.3	464.3	464.3	464.3		
Bankfull Width (ft)	33.2	34.1	34.3	29.1	31.3	28.5			26.6	23.2	23.4	22.8	21.8	21.8			26.7	29.2	25.8	24.3	24.8	24.0			25.1	23.1	26.2	22.4	23.4	23.0		
Floodprone Width (ft)									>200	>200	>200	>200	>200	>200											>200	>200	>200	>200	>200	>200		
Bankfull Mean Depth (ft)	1.8	2.0	2.0	2.2	2.0	2.0			1.6	2.0	2.0	1.9	2.0	2.0			2.3	2.3	2.4	2.7	3.0	2.5			1.8	2.1	1.9	2.0	1.9	1.9		
Bankfull Max Depth (ft)	3.6	3.7	3.8	3.7	3.6	3.6			2.9	3.0	3.0	2.9	2.9	3.0			3.9	4.4	4.6	5.0	5.6	4.8			3.3	3.4	3.4	3.3	3.3	3.2		
Bankfull Cross-Sectional Area (ft ²)	58.4	68.3	68.7	64.3	61.7	58.4			42.6	45.5	48.0	44.1	42.6	42.6			60.3	67.5	62.9	64.9	74.4	60.3			44.6	47.7	48.8	44.0	45.2	44.6		
Bankfull Width/Depth Ratio	18.9	17.1	17.1	13.2	15.9	13.9			16.7	11.9	11.4	11.8	11.1	11.2			11.8	12.7	10.6	9.1	8.2	9.5			14.1	11.1	14.1	11.4	12.1	11.9		
Bankfull Entrenchment Ratio									>8	>12	>9	>9	>12	>9				-		-					>8	>9	>8	>9	>9	>9		
Bankfull Bank Height Ratio									1.0	1.0	1.0	1.0	1.0	1.0			-								1.0	1.0	1.0	1.0	1.0	1.0		
		Cross-S	Section 5,	, Norket	t Branch	Reach 1	(Riffle)			Cross-	Section 6	, Norkett	Branch	Reach 2,	(Riffle)			Cross-S	ection 7,	, Norkett	Branch	Reach 2,	(Riffle)			Cross-S	ection 8	3, Norkett	t Branch	Reach 2	, (Pool)	
Dimension ¹	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3 ²	MY4	MY5	MY6	MY7
Bankfull Elevation (ft) ¹	461.5	461.5	461.5	461.5	461.5	461.6			459.9	459.9	459.9	459.9	459.9	460.0			458.1	458.1	458.1	458.1	458.1	458.3			457.7	457.7	457.7	457.7	457.7	457.9		
Low Bank Elevation (ft)	461.5	461.5	461.5	461.5	461.5	461.5			459.9	459.9	459.9	459.9	459.9	459.9			458.1	458.1	458.1	458.1	458.1	458.1			457.7	457.7	457.7	457.7	457.7	457.7		
Bankfull Width (ft)	22.5	23.5	23.3	22.3	24.1	23.1			25.7	26.0	25.6	25.0	24.3	24.9			25.6	24.9	25.6	23.2	23.0	25.4			30.1	26.8	29.1	28.7	30.1	30.8		
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200			>200	>200	>200	>200	>200	>200			>200	>200	>200	>200	>200	>200										
Bankfull Mean Depth (ft)	1.7	1.8	1.7	1.7	1.6	1.7			2.0	2.0	2.1	2.0	2.0	2.0			1.8	2.0	1.9	1.9	1.9	1.8			2.4	2.7	2.5	2.5	2.4	2.4		
Bankfull Max Depth (ft)	2.6	3.0	2.9	2.7	2.9	2.8			3.3	3.3	3.6	3.2	3.1	3.3			3.0	3.2	3.1	3.1	3.1	3.3			4.5	4.4	4.5	4.6	4.7	4.8		
Bankfull Cross-Sectional Area (ft ²)	38.8	42.3	40.5	37.4	39.5	38.8			50.8	52.0	53.4	49.6	48.5	50.8			46.7	48.7	48.5	44.6	43.3	46.7			72.5	71.0	73.2	71.5	71.9	72.5		
Bankfull Width/Depth Ratio	13.1	13.1	13.3	13.2	14.7	13.7			13.0	13.0	12.3	12.6	12.2	12.2			14.1	12.7	13.6	12.1	12.3	13.8			12.5	10.1	11.6	11.5	12.6	13.1		
Bankfull Entrenchment Ratio	>9	>9	>9	>9	>8	>9			>8	>8	>8	>8	>9	>8			>8	>8	>8	>9	>9	>8										
											-0	-0		-0			-0	-0	-0													

² MY3 calculations were adjusted on Cross-section 8 because they were found to omit a portion of the bankfull area.

^{---:} Not Applicable

Table 12b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Norkett Branch Stream Mitigation Site

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

UT1 and UT2 Reaches 1 and 2

UT1 and UT2 Reaches 1 and 2																																
			Cross-	Section 9	9, UT1, (F	Riffle)					Cross-	Section 1	0, UT1, (Pool)				Cr	oss-Secti	ion 11, U	T2 Reac	h 1, (Poo	d)			Cro	ss-Secti	on 12, Ul	T2 Reach	1, (Riffl	e)	
Dimension ¹	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	472.0	472.0	472.0	472.0	472.0	472.0			471.7	471.7	471.7	471.7	471.7	471.5			484.1	484.1	484.1	484.1	484.1	484.0			484.0	484.0	484.0	484.0	484.0	483.9		
Low Bank Elevation (ft)	472.0	472.0	472.0	472.0	472.0	472.0			471.7	471.7	471.7	471.7	471.7	471.7			484.1	484.1	484.1	484.1	484.1	484.1			484.0	484.0	484.0	484.0	484.0	484.0		
Bankfull Width (ft)	10.5	11.6	11.1	10.2	10.2	9.3			18.1	15.9	17.3	13.5	11.7	10.4			10.6	11.1	11.3	12.1	9.1	9.5			9.4	11.1	9.5	10.8	9.9	9.3		
Floodprone Width (ft)	136	136	138	131	107.3	129.8				-															144	151	155	146.5	152.9	152.7		
Bankfull Mean Depth (ft)		0.5	0.6	0.4	0.4	0.5			0.5	0.9	0.9	0.8	1.0	0.9			0.7	0.8	0.8	0.6	1.0	0.8			0.5	0.5	0.6	0.4	0.6	0.5		
Bankfull Max Depth (ft)	0.8	1.1	0.9	0.6	0.9	0.8			1.8	2.0	2.1	1.9	2.1	1.9			1.9	2.0	0.8	1.7	1.9	1.7			1.2	1.1	1.2	1.0	1.1	1.0		
Bankfull Cross-Sectional Area (ft ²)	4.5	6.2	6.7	4.0	4.4	4.5			9.8	14.0	12.7	10.3	12.2	9.8			7.5	9.4	8.8	6.7	9.1	7.5			4.5	5.6	5.5	3.9	5.8	4.5		ĺ
Bankfull Width/Depth Ratio	24.5	21.7	18.5	25.7	23.6	19.1			33.3	18.0	23.5	17.7	11.2	11.0			15.2	13.2	14.6	21.9	9.0	12.0			19.8	22.0	16.4	29.6	17.1	19.4		
Bankfull Entrenchment Ratio	13.0	11.7	12.4	12.9	10.6	14.0																			15.2	13.6	16.3	13.6	15.4	16.3		
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0								-											1.0	1.0	1.0	1.0	1.0	1.1		
		Cro	ss-Secti	on 13, U	T2 Reach	2, (Riffl	le)			Cr	oss-Secti	ion 14, U	T2 Reacl	1 2, (Poc	ol)			Cro	oss-Secti	on 15, U	T2 Reacl	h 2, (Riffl	e)			Cr	oss-Secti	ion 16, U	IT2 Reach	1 2, (Poo	l)	
Dimension ¹	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	477.6	477.6	477.6	477.6	477.6	477.6			477.5	477.5	477.5	477.5	477.5	477.6			472.3	472.3	472.3	472.3	472.3	471.9			472.1	472.1	472.1	472.1	472.1	471.9		
Low Bank Elevation (ft)	477.6	477.6	477.6	477.6	477.6	477.6			477.5	477.5	477.5	477.5	477.5	477.5			472.3	472.3	472.3	472.3	472.3	472.3			472.1	472.1	472.1	472.1	472.1	472.1		
Bankfull Width (ft)	9.0	9.5	9.1	8.9	8.2	8.2			13.9	13.7	14.8	12.9	15.3	12.5			9.6	10.5	11.5	11.9	11.2	7.6			9.6	9.4	7.9	9.6	8.6	8.1		
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200							-				>200	>200	>200	>200	>200	>200										
Bankfull Mean Depth (ft)	0.6	0.7	0.7	0.6	0.7	0.6			0.8	1.0	0.8	0.9	0.8	0.9			0.5	0.7	0.8	0.7	0.8	0.7			0.7	0.9	1.0	1.0	1.0	0.9		
Bankfull Max Depth (ft)	1.2	1.2	1.2	1.1	1.0	1.0			2.1	2.2	2.0	2.0	1.9	2.0			1.1	1.4	1.3	1.6	1.5	1.1			1.8	1.9	1.9	2.0	1.9	1.8		
Bankfull Cross-Sectional Area (ft ²)	5.3	7.1	6.4	5.6	5.5	5.3			11.7	14.1	12.0	11.3	11.6	11.7			5.2	7.6	8.7	8.8	8.7	5.2			7.0	8.1	8.1	9.2	8.8	7.0		
Bankfull Width/Depth Ratio	15.3	12.8	13.0	14.1	12.4	12.8			16.4	13.2	18.2	14.7	20.1	13.4			17.6	14.5	15.4	15.9	14.5	11.0			13.3	10.9	7.7	10.1	8.4	8.6		
Bankfull Entrenchment Ratio	>22	>21	>22	>23	>24	>25											>15	>19	>17	>17	>18	>18										
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0											1.0	1.0	1.0	1.0	1.0	1.3										

^{---:} Not Applicable

Table 12c. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

UT2 Reaches 3A and 3B

		Cr	oss-Secti	on 17, U	T2 Reach	3A, (Poo	I)			Cro	ss-Sectio	on 18, U1	2 Reach	3A, (Riff	le)			Cro	ss-Sectio	n 19, UT	2 Reach 3	BB, (Riffl	e)			Cro	oss-Sectio	on 20, UT	2 Reach:	3B, (Pool)	
Dimension ¹	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	466.9	466.9	466.9	466.9	466.9	466.6			466.8	466.8	466.8	466.8	466.8	466.6			461.2	461.2	461.2	461.2	461.2	461.1			461.2	461.2	461.2	461.2	461.2	461.2		
Low Bank Elevation (ft)	466.9	466.9	466.9	466.9	466.9	466.9			466.8	466.8	466.8	466.8	466.8	466.8			461.2	461.2	461.2	461.2	461.2	461.2			461.2	461.2	461.2	461.2	461.2	461.2		
Bankfull Width (ft)	10.5	10.9	11.3	10.1	10.2	10.1			10.5	11.1	10.1	10.5	10.2	10.4			13.9	12.6	14.3	13.6	13.2	13.0			14.7	15.0	15.5	14.5	14.5	14.5		
Floodprone Width (ft)		-		-					>200	>200	>200	>200	>200	>200			130	130	146	131.9	135.3	142.6										
Bankfull Mean Depth (ft)	1.0	1.2	1.1	1.3	1.3	1.1			0.7	0.7	0.7	0.9	0.9	0.7			0.8	1.2	1.0	0.9	1.0	0.9			1.4	1.5	1.5	1.5	1.5	1.5		
Bankfull Max Depth (ft)	2.0	2.0	2.2	2.1	2.3	1.9			1.2	1.3	1.4	1.5	1.5	1.3			1.6	1.8	1.8	1.7	1.6	1.7			2.6	2.7	2.7	2.8	2.6	2.6		
Bankfull Cross-Sectional Area (ft ²)	10.7	12.9	12.1	13.0	13.7	10.7			7.2	7.6	7.6	9.3	9.5	7.2			11.8	14.9	14.3	12.6	12.6	11.8			21.2	22.7	23.0	21.3	21.5	21.2		
Bankfull Width/Depth Ratio	10.2	9.2	10.5	7.8	7.6	9.5			15.3	16.2	13.6	11.9	11.1	14.9			16.5	10.6	14.4	14.7	13.7	14.3			10.2	9.9	10.4	9.8	9.8	10.0		
Bankfull Entrenchment Ratio		-		-					>19	>18	>9	>19	>16	>19			9.3	10.3	10.2	9.7	10.3	11.0										
Bankfull Bank Height Ratio									1.0	1.0	1.0	1.0	1.0	1.2			1.0	1.0	1.0	1.0	1.0	1.1										

¹ Prior to MY5, bankfull dimensions were calculated using a fixed bankfull elevation. For MY5 through MY7, bankfull elevation is calculated using a fixed Abkf as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018).

^{---:} Not Applicable

Table 13a. Monitoring Data - Stream Reach Data Summary

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

Norkett Branch Reach 1

Parameter	As-Built	/Baseline	M	Y1		MY2		MY3	N	1Y4	M	IY5	М	Y6	M	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	22.5	26.6	23.1	23.5	23.3	26.2	22.3	22.8	21.8	24.1	21.8	23.1				
Floodprone Width (ft)	>2	200	>2	00		>200	>	200	>2	200	>2	200			1	
Bankfull Mean Depth	1.6	1.8	1.8	2.1	1.7	2.0	1.7	2.0	1.6	2.0	1.7	2.0			ı	
Bankfull Max Depth	2.6	3.3	3.0	3.4	2.9	3.4	2.7	3.3	2.9	3.3	2.8	3.2			L	
Bankfull Cross-sectional Area (ft ²)	38.8	44.6	42.3	47.7	40.5	48.8	37.4	44.1	39.5	45.2	38.8	44.6			ı	
Width/Depth Ratio	13.1	16.7	11.1	13.1	11.4	14.1	11.4	13.2	11.1	14.7	11.2	13.7			1	
Entrenchment Ratio	>	2.2	>2	2.2		>2.2	;	2.2	>	2.2	>2	2.2				
Bank Height Ratio	1	1.0	1	.0		1.0		1.0	1	1.0	1	0			1	
D50 (mm)	18.4	59.6	13.3	26.9	24.7	90.0	20.9	51.8	4.0	34.3	Silt/Clay	68.0				
Profile																
Riffle Length (ft)	14	84														
Riffle Slope (ft/ft)	0.0000	0.0152														
Pool Length (ft)	12	88														
Pool Max Depth (ft)	3.3	5.1														
Pool Spacing (ft)	67	183														
Pool Volume (ft ³)															l	
Pattern																
Channel Beltwidth (ft)	38	147														
Radius of Curvature (ft)	38	65														
Rc:Bankfull Width (ft/ft)	1.7	2.4														
Meander Wave Length (ft)	167	263														
Meander Width Ratio	1.7	5.5													I	
Additional Reach Parameters																
Rosgen Classification		C4	(.4		C4		C4	(C4	(C5				
Channel Thalweg Length (ft)		369														
Sinuosity (ft)		.24														
Water Surface Slope (ft/ft)		003														
Bankfull Slope (ft/ft)	0.	003														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	0.4/3.6/7.4/5	2.3/139.4/362	1.0/8.0/16.7/		0.3/11.0/29.	3/121.7/180/1024		32.0/214.7/>2048		/39.8/89.6/180		5.9/119.3/180				
% of Reach with Eroding Banks			6	%		0%		6%	3	3%	2	!%				

Table 13b. Monitoring Data - Stream Reach Data Summary

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Norkett Branch Reach 2

Norkett Branch Reach 2 Parameter	A - Dudle	/Baseline	М	V4		1Y2		IY3		IY4		MY5		Y6		1Y7
Parameter	·															
D: 101111 D:M	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle Bankfull Width (ft)	25.6	25.7	24.0	26.0	25.6	25.6	22.2	25.0	22.0	24.2	24.0	25.4				
	25.6	25.7	24.9	26.0	25.6	25.6 200	23.2	25.0	23.0	24.3	24.9	25.4 200				
Floodprone Width (ft)																
Bankfull Mean Depth	1.8	2.0	2.0	2.0	1.9	2.1	1.9	2.0	1.9	2.0	1.8	2.0				├
Bankfull Max Depth	3.0	3.3	3.2	3.3	3.1	3.6	3.1	3.2	3.1	3.1		3.3				
Bankfull Cross-sectional Area (ft ²)	46.7	50.8	48.7	52.0	48.5	53.4	44.6	49.6	43.3	48.5	46.7	50.8				ļ
Width/Depth Ratio	13.0	14.1	12.7	13.0	12.3	13.6	12.1	12.6	12.2	12.3	12.2	13.8				<u> </u>
Entrenchment Ratio	>2		>2			2.2		2.2		2.2		2.2				<u> </u>
Bank Height Ratio	1			.0		1.0		.0		.0	<1.0	1.0				<u> </u>
D50 (mm)	7.3	9.9	3.6	12.1	1.0	27.8	4.4	11.0	1.7	5.6	1.7	16.0				<u> </u>
Profile																
Riffle Length (ft)	19	111														
Riffle Slope (ft/ft)	0.0009	0.0163														
Pool Length (ft)	51	102														
Pool Max Depth (ft)	3.5	4.8														
Pool Spacing (ft)	98	172														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	38	155														
Radius of Curvature (ft)	40	64														
Rc:Bankfull Width (ft/ft)	1.6	2.5														
Meander Wave Length (ft)	181	277														
Meander Width Ratio	1.5	6.0														
Additional Reach Parameters						•		•		•		•				
Rosgen Classification	C4,	/E4	C4	/E4	C	1/E4	C4	/E4	C4	/E4	C!	5/E5				
Channel Thalweg Length (ft)	1,4	199														
Sinuosity (ft)	1.	20														
Water Surface Slope (ft/ft)	0.0	003														
Bankfull Slope (ft/ft)	0.0	003														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d1002	.6/6.7/13.0/62	2.6/210.9/>2048	0.3/10.4/15.3	3/49.1/90/362	4.2/16/24.9/	83.4/151.8/362	SC/6.7/17.6/5	2.6/101.2/256.0	SC/2.95/11.9/	/56.9/90.8/180	SC/SC/0.6/6	4/151.8/>2048				
% of Reach with Eroding Banks	,, .			.3/10.4/15.3/49.1/90/362 4.2 7%		5%		2%		1%		1%				

Table 13c. Monitoring Data - Stream Reach Data Summary

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

UT1

UT1							1									
Parameter	As-Built	/Baseline	М	Y1	IV	IY2	M	/3	M	Y4		MY5	М	Y6	N	/IY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	1	0.5	11	6	1	1.1	10	.2	10	1.2		9.3				
Floodprone Width (ft)		.36	13			38	13		10			129.8				
Bankfull Mean Depth		0.4	0	.5		1.6	0.		0			0.5				
Bankfull Max Depth	(0.8	1	.1	0	1.9	0.	6	0	.9		0.8				
Bankfull Cross-sectional Area (ft ²)	4	1.5	6	.2	6	i.7	4.	0	4	4		4.5				
Width/Depth Ratio	2	4.5	21	7	1	8.5	20	.8	23	.6		19.1				
Entrenchment Ratio	1	3.0	11	7	1	2.4	14	.4	10	1.6		14				
Bank Height Ratio	1	1.0	1	.0	1	0	1.	0	1	.0		1.0				
D50 (mm)	2	0.9	48	3.3	2	1.9	68	.2	8	.3		34.5				
Profile																
Riffle Length (ft)	7	39														
Riffle Slope (ft/ft)	0.007	0.044														
Pool Length (ft)	12	69														
Pool Max Depth (ft)	1.2	2.5														
Pool Spacing (ft)	30	58														
Pool Volume (ft ³)																
Pattern						•										
Channel Beltwidth (ft)	13	49														
Radius of Curvature (ft)	14	23														
Rc:Bankfull Width (ft/ft)	1.3	2.2														
Meander Wave Length (ft)	61	88														
Meander Width Ratio	1.2	4.7														
Additional Reach Parameters																
Rosgen Classification		C4	C	4	(24	C	1	C	4		C6				
Channel Thalweg Length (ft)	1,	198														
Sinuosity (ft)	1	.20														
Water Surface Slope (ft/ft)	0.	011														
Bankfull Slope (ft/ft)	0.	011														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	SC/1.0/12.7	//55.3/90/256	SC/2.4/9.4/61	2/139.4/256.0	SC/0.1/8.6/8	2.6/139.4/256	SC/SC/5.6/49.8	3/107.3/>2048	SC/1.04/8.3/	59.2/143/256	SC/SC/SC/	61.5/101.2/180				
% of Reach with Eroding Banks			0	%	C	1%	09	6	0	%		0%	İ			

Table 13d. Monitoring Data - Stream Reach Data Summary

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

UT2 Reach 1

UT2 Reach 1																-
Parameter	As-Built	/Baseline		MY1	N	1Y2	1	MY3	IV	1Y4	r	MY5	IV	IY6	M	/IY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)		0.4		11.1		9.5		10.8		9.9		9.3				
Floodprone Width (ft)	1	44		151	1	.55		147	15	2.9	1	52.7			<u> </u>	
Bankfull Mean Depth).5		0.5		0.6		0.4).6		0.5			L	
Bankfull Max Depth		2		1.1		1.2		1.0		1.1		1				
Bankfull Cross-sectional Area (ft ²)	4	l.5		5.6	5	5.5		3.9	5	5.8		4.5			l	
Width/Depth Ratio	1	9.8		22.0	1	6.4		29.6	1	7.1	1	19.4				
Entrenchment Ratio	1	5.2		13.6	1	6.3		13.6	1	5.4	1	16.3				
Bank Height Ratio	1	0		1.0	1	1.0		1.0	1	1.0		1.1				
D50 (mm)	1	9.5		32.0	3	7.9		49.8	5	3.7	3	39.4				
Profile					•		•									
Riffle Length (ft)	7	34														
Riffle Slope (ft/ft)	0.006	0.037														
Pool Length (ft)	11	35														
Pool Max Depth (ft)	1.5	2.6														
Pool Spacing (ft)	21	64														
Pool Volume (ft ³)																
Pattern												•				
Channel Beltwidth (ft)	10	42														
Radius of Curvature (ft)	15	21														
Rc:Bankfull Width (ft/ft)	1.6	2.2														
Meander Wave Length (ft)	45	92														
Meander Width Ratio	1.0	4.4														
Additional Reach Parameters					•		•		•			•		•		
Rosgen Classification	(C4		C4		C4		C4	(C4		C6				
Channel Thalweg Length (ft)	1,	039														
Sinuosity (ft)	1	.20														
Water Surface Slope (ft/ft)	0.0	006														
Bankfull Slope (ft/ft)	0.0	006														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	SC/7.1/12.2,	/28.5/42.9/90	SC/12/20.	6/58.1/111.2/256	SC/5.6/16.7/5	57.4/107.3/362	SC/0.25/12.9/	/69.7/120.7/362.0	SC/SC/SC/5	2.8/96.6/180	SC/SC/SC/	45/103.6/180				
% of Reach with Eroding Banks				0%		0%		0%)%		0%				

Table 13e. Monitoring Data - Stream Reach Data Summary

Norkett Branch Stream Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

UT2 Reach 2

Parameter	As-Built/Baseline		MY1		MY2		MY3		MY4		MY5		MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	9.0	9.6	9.5	10.5	9.1	11.5	8.9	11.9	8.2	11.2	7.6	8.2				
Floodprone Width (ft)		200		200	>20		>	200	>2	200		200			1	
Bankfull Mean Depth	0.5	0.6	0.7	0.7	0.7	0.8	0.6	0.7	0.7	0.8	0.6	0.7				
Bankfull Max Depth	1.1	1.2	1.2	1.4	1.2	1.3	1.1	1.6	1.0	1.5	1.0	1.1				
Bankfull Cross-sectional Area (ft ²)	5.2	5.3	7.1	7.6	6.4	8.7	5.6	8.8	5.5	8.7	5.2	5.3			ı	
Width/Depth Ratio	15.3	17.6	12.8	14.5	13.0	15.4	14.1	15.9	12.4	14.5	11.0	12.8			1	
Entrenchment Ratio	>	2.2	>	2.2	>2.2		>2.2		>2.2		>2.2					
Bank Height Ratio		0	1	.0	1.0)	1.0			.0	1.0	1.3			ı	
D50 (mm)	20.1	27.4	41.3	50.6	39.0	39.3	35.4	51.4	53.7	68.5	49.3	69.0				
Profile																
Riffle Length (ft)	6	27													L	
Riffle Slope (ft/ft)	0.009	0.039														
Pool Length (ft)	11	45														
Pool Max Depth (ft)	1.5	2.5														
Pool Spacing (ft)	22	71														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	12	52														
Radius of Curvature (ft)	14	22														
Rc:Bankfull Width (ft/ft)	1.6	2.3														
Meander Wave Length (ft)	44	83													L	
Meander Width Ratio	1.3	5.4														
Additional Reach Parameters																
Rosgen Classification			C4		C4		C4		C4		C4					
Channel Thalweg Length (ft)		440														
Sinuosity (ft)		.30														
Water Surface Slope (ft/ft)		007														
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	2.4/11.6/20.7	/56.1/86.7/180		90/160.7/512		3/18.4/45/119.3/196.6/1024		.4/118.9/180.0	SC/SC/12.5/71.7/112.2/180		SC/SC/13.3/67.2/120.7/180					
% of Reach with Eroding Banks	% of Reach with Eroding Banks		(1%	0%		0%		0%		0%]			

Table 13f. Monitoring Data - Stream Reach Data Summary

Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

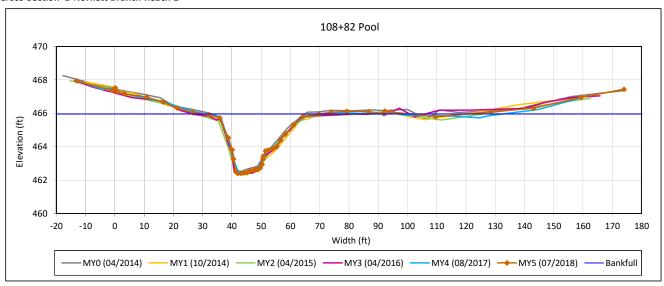
UT2 Reach 3A

UT2 Reach 3A									
Parameter	As-Built/Baseline	MY1	MY2	MY3	MY4	MY5	MY6	MY7	
	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	
Dimension and Substrate - Riffle									
Bankfull Width (ft)	10.5	11.1	10.1	10.5	10.2	10.4			
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200			
Bankfull Mean Depth	0.7	0.7	0.7	0.9	0.9	0.7			
Bankfull Max Depth	1.2	1.3	1.4	1.5	1.5	1.3			
Bankfull Cross-sectional Area (ft ²)	7.2	7.6	7.6	9.3	9.5	7.2			
Width/Depth Ratio	15.3	16.2	13.6	11.9	11.1	14.9			
Entrenchment Ratio	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2			
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.2			
D50 (mm)	32.0	45.0	25.7	40.8	53.7	28.6			
Profile									
Riffle Length (ft)	8 25								
Riffle Slope (ft/ft)	0.010 0.046								
Pool Length (ft)	10 42								
Pool Max Depth (ft)	1.77 2.98								
Pool Spacing (ft)	26 66								
Pool Volume (ft ³)									
Pattern	· ·	<u> </u>	1						
Channel Beltwidth (ft)	8 37								
Radius of Curvature (ft)	14 27								
Rc:Bankfull Width (ft/ft)	1.3 2.6								
Meander Wave Length (ft)	58 88								
Meander Width Ratio	0.8 3.5								
Additional Reach Parameters									
Rosgen Classification	C4	C4	C4	C4	C4	C4			
Channel Thalweg Length (ft)	658								
Sinuosity (ft)	1.20								
Water Surface Slope (ft/ft)	0.003								
Bankfull Slope (ft/ft)	0.002								
Ri%/Ru%/P%/G%/S%									
SC%/Sa%/G%/C%/B%/Be%		1		İ	İ	İ			
d16/d35/d50/d84/d95/d100	22.6/27.4/32/53.7/69.7/128	16.0/30.3/41.5/87.0/202.4/362.0	6.7/24.8/40.6/116.3/173.3/1024	12.8/27.8/41.3/85.7/128.0/180.0	SC/11/42.5/112.6/>2048/>2048	SC/14.9/28.6/62.6/90/180			
% of Reach with Eroding Banks	. , . , ,	0%	0%	0%	0%	0%			

Table 13g. Monitoring Data - Stream Reach Data Summary

Norkett Branch Stream Mitigation Site

DMS Project No. 95360


Monitoring Year 5 - 2018

UT2 Reach 3B

Parameter	As-Built/Baseline		MY1		MY2		МҮЗ		MY4		MY5		МҮ6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	1	3.9	1	.2.6		14.3		13.6	13	3.2		13				
Floodprone Width (ft)	1	.30		130		146	132		135.3		142.6					
Bankfull Mean Depth	(0.8		1.2	1.0		0.9		1		0.9					
Bankfull Max Depth	1	1.6	1.8		1.8		1.7		1.6		1.7					
Bankfull Cross-sectional Area (ft ²)	1	1.8	14.9		14.3			12.6	13	3.2		11.8				
Width/Depth Ratio	1	6.5	10.6		14.4		14.7		13.7		14.3					
Entrenchment Ratio	9	9.3	10.3		10.2		9.7		10.3			11				
Bank Height Ratio	1	1.0		1.0	1.0		1.0		1.0			1.1				
D50 (mm)	3	3.4	3	0.6		68.5		48.3	4	5	24.2					
Profile																
Riffle Length (ft)	13	28														
Riffle Slope (ft/ft)	0.001	0.024														
Pool Length (ft)	32	45														
Pool Max Depth (ft)	2.45	3.32														
Pool Spacing (ft)	38	72														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	20	61														
Radius of Curvature (ft)	24	31														
Rc:Bankfull Width (ft/ft)	1.7	2.2														
Meander Wave Length (ft)	87	105														
Meander Width Ratio	1.4	4.4														
Additional Reach Parameters																
Rosgen Classification	C4		C4		C4		C4		C4		C6					
Channel Thalweg Length (ft)	6	58														
Sinuosity (ft)		.20														
Water Surface Slope (ft/ft)		003														
Bankfull Slope (ft/ft)	0.002															
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	SC/4.9/13.3/	/13.3/67.2/89.9/128 SC/4.5/14.8/60.0/98.3/180.0		SC/0.7/12.7/71.7/128/362		SC/SC/SC/60.4/107.3/180.0		SC/6.12/19/82.6/151.8/>2048		SC/SC/SC/90/151.8/>2048						
% of Reach with Eroding Banks				3%	0%		0%		0%		0%					

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 1-Norkett Branch Reach 1

Bankfull Dimensions

58.4 x-section area (ft.sq.)

28.5 width (ft)

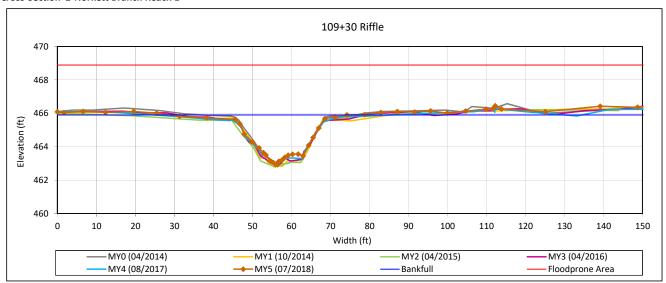
2.0 mean depth (ft)

3.6 max depth (ft)

30.0 wetted parimeter (ft)

1.9 hyd radi (ft)

13.9 width-depth ratio


Survey Date: 07/2018

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 2-Norkett Branch Reach 1

Bankfull Dimensions

42.6 x-section area (ft.sq.)

21.8 width (ft)

2.0 mean depth (ft)

3.0 max depth (ft)

22.7 wetted parimeter (ft)

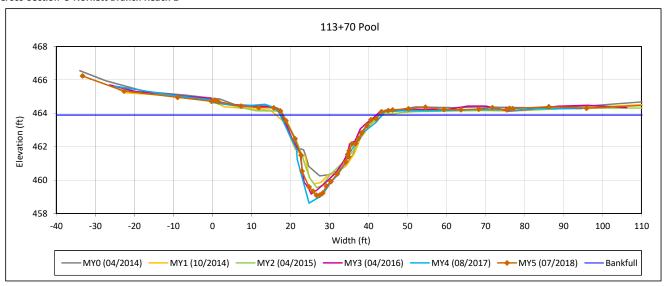
1.9 hyd radi (ft)

11.2 width-depth ratio

>200 W flood prone area (ft)

>9.2 entrenchment ratio

1.0 low bank height ratio


Survey Date: 07/2018

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 3-Norkett Branch Reach 1

Bankfull Dimensions

60.3 x-section area (ft.sq.)

24.0 width (ft)

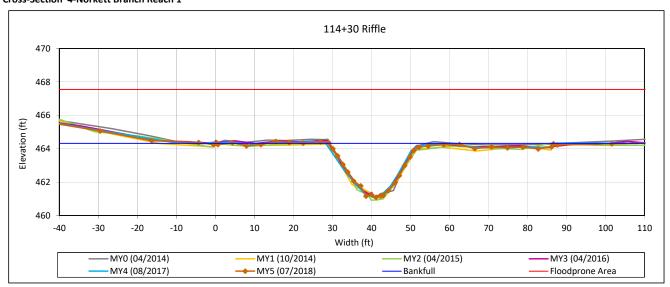
2.5 mean depth (ft)

4.8 max depth (ft)

26.7 wetted parimeter (ft)

2.3 hyd radi (ft)

9.5 width-depth ratio


Survey Date: 07/2018

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 4-Norkett Branch Reach 1

Bankfull Dimensions

44.6 x-section area (ft.sq.)

23.0 width (ft)

1.9 mean depth (ft)

3.2 max depth (ft)

24.1 wetted parimeter (ft)

1.9 hyd radi (ft)

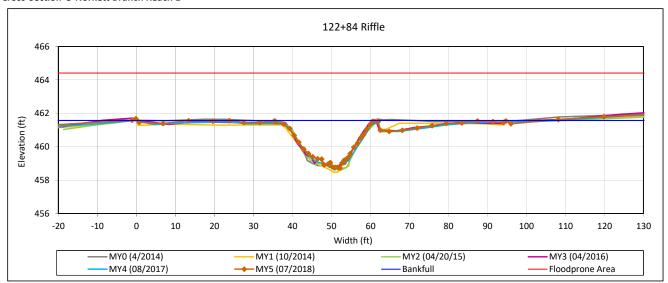
11.9 width-depth ratio

>200 W flood prone area (ft)

>8.7 entrenchment ratio

1.0 low bank height ratio

1.0 low bank neight rate


Survey Date: 07/2018

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 5-Norkett Branch Reach 1

Bankfull Dimensions

38.8 x-section area (ft.sq.)

23.1 width (ft)

1.7 mean depth (ft)

2.8 max depth (ft)

24.0 wetted parimeter (ft)

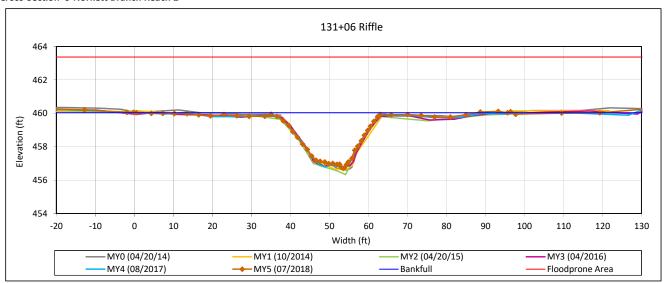
1.6 hyd radi (ft)

13.7 width-depth ratio

>200 W flood prone area (ft)

>8.8 entrenchment ratio

1.0 low bank height ratio


Survey Date: 07/2018

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 6-Norkett Branch Reach 2

Bankfull Dimensions

50.8 x-section area (ft.sq.)

24.9 width (ft)

2.0 mean depth (ft)

3.3 max depth (ft)

25.9 wetted parimeter (ft)

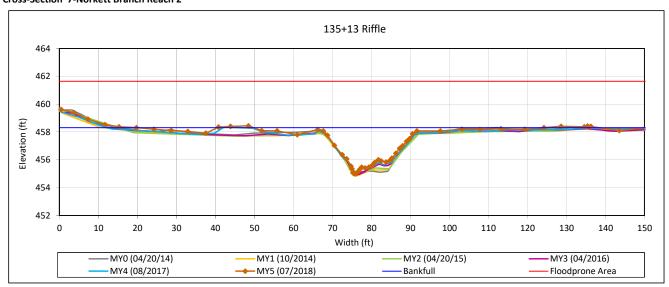
2.0 hyd radi (ft)

12.2 width-depth ratio

>200 W flood prone area (ft)

>8.1 entrenchment ratio

1.0 low bank height ratio


Survey Date: 07/2018

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 7-Norkett Branch Reach 2

Bankfull Dimensions

46.7 x-section area (ft.sq.)

25.4 width (ft)

1.8 mean depth (ft)

3.3 max depth (ft)

26.6 wetted parimeter (ft)

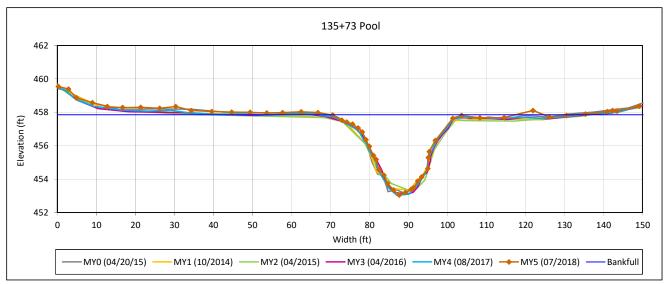
1.8 hyd radi (ft)

13.8 width-depth ratio

>200 W flood prone area (ft)

>8.4 entrenchment ratio

<1.0 low bank height ratio


Survey Date: 07/2018

View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360 **Monitoring Year 5 - 2018**

Cross-Section 8-Norkett Branch Reach 2

Bankfull Dimensions

72.5 x-section area (ft.sq.)

30.8 width (ft)

2.4 mean depth (ft)

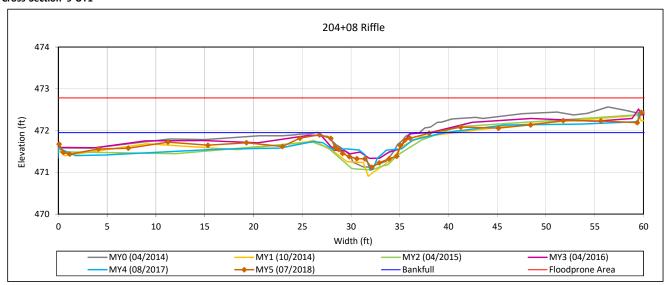
4.8 max depth (ft)

33.0 wetted parimeter (ft)

2.2 hyd radi (ft)

13.1 width-depth ratio

Survey Date: 07/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

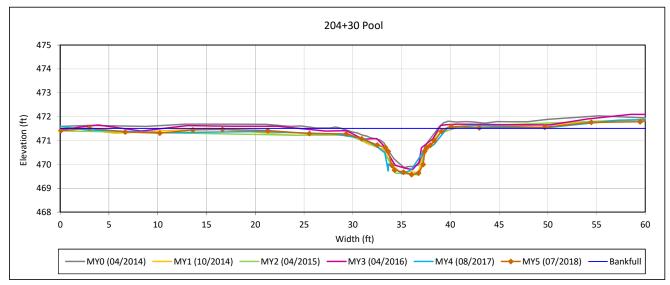
Monitoring Year 5 - 2018

Cross-Section 9-UT1

Bankfull Dimensions

- 4.5 x-section area (ft.sq.)
- 9.3 width (ft)
- 0.5 mean depth (ft)
- 0.8 max depth (ft)
- 9.5 wetted parimeter (ft)
- 0.5 hyd radi (ft)
- 19.1 width-depth ratio
- 129.8 W flood prone area (ft)
- 14.0 entrenchment ratio
- low bank height ratio 1.0

Survey Date: 07/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 10-UT1

Bankfull Dimensions

9.8 x-section area (ft.sq.)

10.4 width (ft)

0.9 mean depth (ft)

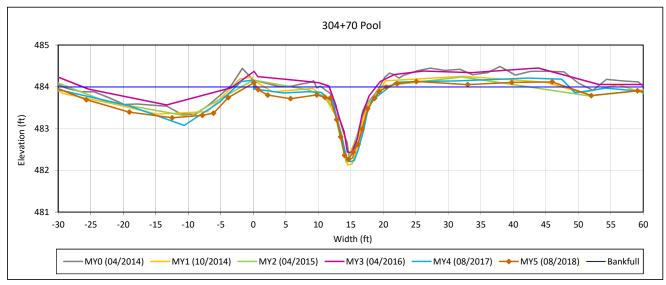
1.9 max depth (ft)

11.7 wetted parimeter (ft)

0.8 hyd radi (ft)

11.0 width-depth ratio

Survey Date: 07/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 11-UT2 Reach 1

Bankfull Dimensions

7.5 x-section area (ft.sq.)

9.5 width (ft)

0.8 mean depth (ft)

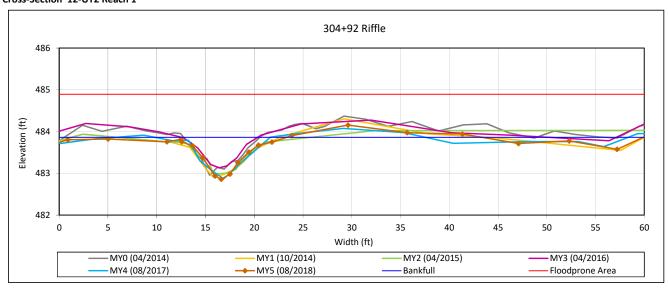
1.7 max depth (ft)

10.2 wetted parimeter (ft)

0.7 hyd radi (ft)

12.0 width-depth ratio

Survey Date: 08/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

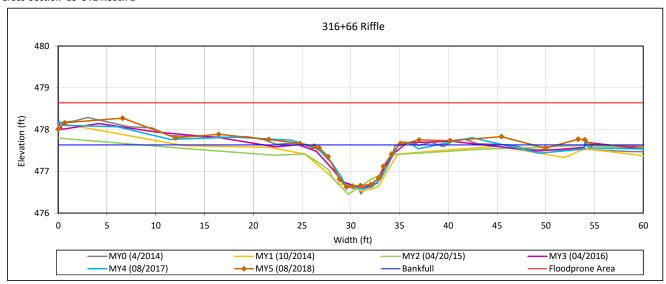
Monitoring Year 5 - 2018

Cross-Section 12-UT2 Reach 1

Bankfull Dimensions

- 4.5 x-section area (ft.sq.)
- 9.3 width (ft)
- 0.5 mean depth (ft)
- 1.0 max depth (ft)
- 9.6 wetted parimeter (ft)
- 0.5 hyd radi (ft)
- 19.4 width-depth ratio
- 152.7 W flood prone area (ft)
- 16.3 entrenchment ratio
- 1.1 low bank height ratio

Survey Date: 08/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

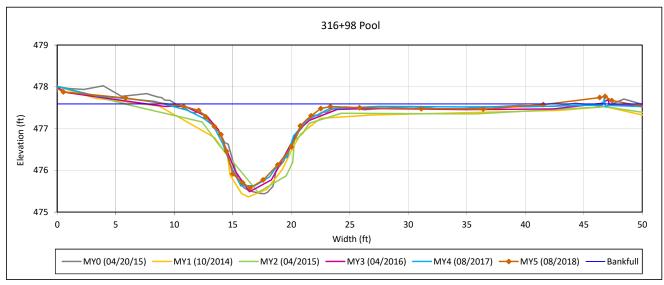
Monitoring Year 5 - 2018

Cross-Section 13-UT2 Reach 2

Bankfull Dimensions

- 5.3 x-section area (ft.sq.)
- 8.2 width (ft)
- 0.6 mean depth (ft)
- 1.0 max depth (ft)
- 8.6 wetted parimeter (ft)
- 0.6 hyd radi (ft)
- 12.8 width-depth ratio
- >200 W flood prone area (ft)
- >24.7 entrenchment ratio
- low bank height ratio 1.0

Survey Date: 08/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 14-UT2 Reach 2

Bankfull Dimensions

11.7 x-section area (ft.sq.)

12.5 width (ft)

0.9 mean depth (ft)

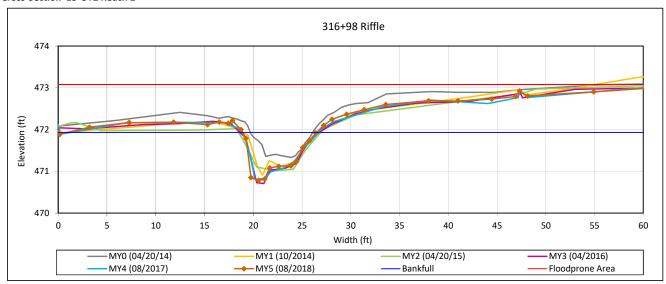
2.0 max depth (ft)

13.4 wetted parimeter (ft)

0.9 hyd radi (ft)

13.4 width-depth ratio

Survey Date: 08/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

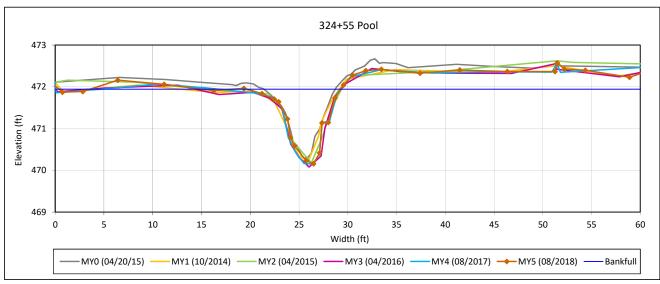
Monitoring Year 5 - 2018

Cross-Section 15-UT2 Reach 2

Bankfull Dimensions

- 5.2 x-section area (ft.sq.)
- 7.6 width (ft)
- 0.7 mean depth (ft)
- 1.1 max depth (ft)
- 8.3 wetted parimeter (ft)
- 0.6 hyd radi (ft)
- 11.0 width-depth ratio
- >200 W flood prone area (ft)
- >18.0 entrenchment ratio
- 1.3 low bank height ratio

Survey Date: 08/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 16-UT2 Reach 2

Bankfull Dimensions

7.0 x-section area (ft.sq.)

8.1 width (ft)

0.9 mean depth (ft)

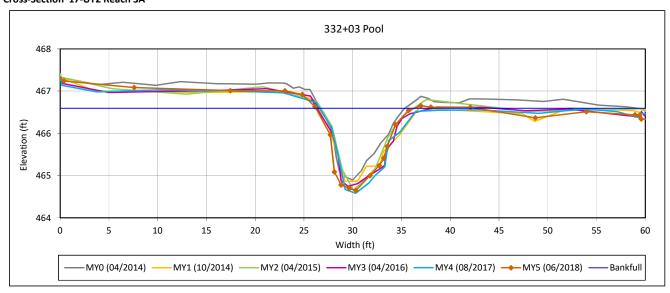
1.8 max depth (ft)

9.3 wetted parimeter (ft)

0.7 hyd radi (ft)

8.6 width-depth ratio

Survey Date: 08/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 17-UT2 Reach 3A

Bankfull Dimensions

10.7 x-section area (ft.sq.)

10.1 width (ft)

1.1 mean depth (ft)

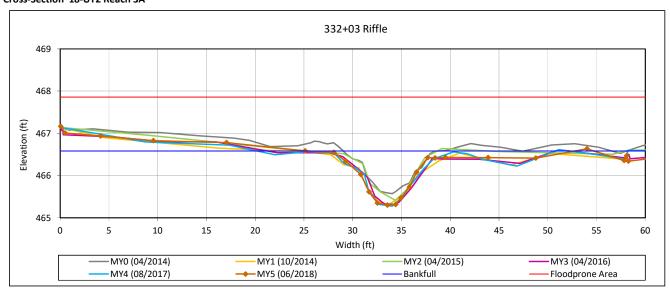
1.9 max depth (ft)

11.2 wetted parimeter (ft)

1.0 hyd radi (ft)

9.5 width-depth ratio

Survey Date: 06/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 18-UT2 Reach 3A

Bankfull Dimensions

7.2 x-section area (ft.sq.)

10.4 width (ft)

0.7 mean depth (ft)

max depth (ft) 1.3

10.7 wetted parimeter (ft)

0.7 hyd radi (ft)

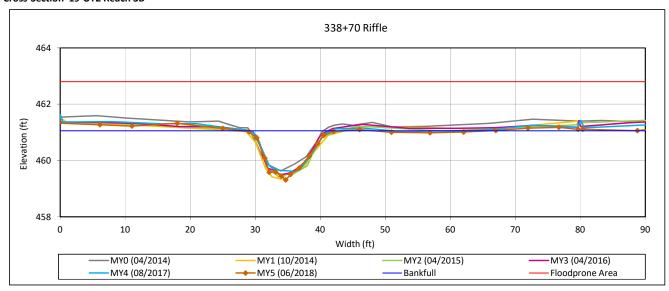
14.9 width-depth ratio

>200 W flood prone area (ft)

>19.2 entrenchment ratio

1.2 low bank height ratio

Survey Date: 06/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 19-UT2 Reach 3B

Bankfull Dimensions

11.8 x-section area (ft.sq.)

13.0 width (ft)

0.9 mean depth (ft)

1.7 max depth (ft)

13.7 wetted parimeter (ft)

0.9 hyd radi (ft)

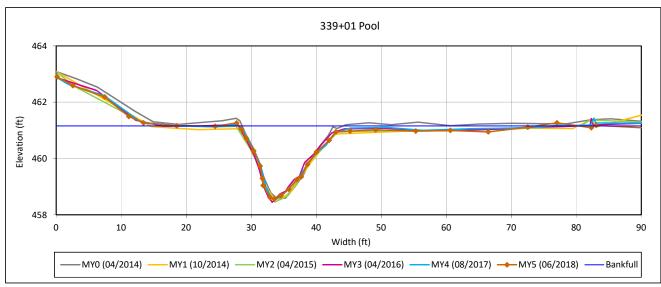
14.3 width-depth ratio

142.6 W flood prone area (ft)

11.0 entrenchment ratio

1.1 low bank height ratio

Survey Date: 06/2018



View Downstream

Norkett Branch Mitigation Site DMS Project No. 95360

Monitoring Year 5 - 2018

Cross-Section 20-UT2 Reach 3B

Bankfull Dimensions

21.2 x-section area (ft.sq.)

14.5 width (ft)

1.5 mean depth (ft)

2.6 max depth (ft)

15.6 wetted parimeter (ft)

1.4 hyd radi (ft)

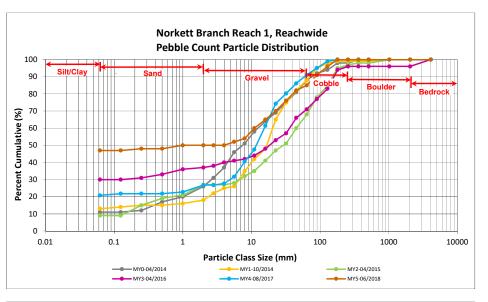
10.0 width-depth ratio

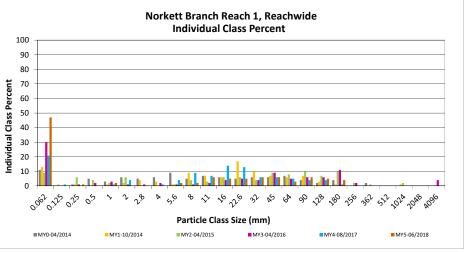
Survey Date: 06/2018

View Downstream

Reachwide and Cross-Section Pebble Count Plots

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

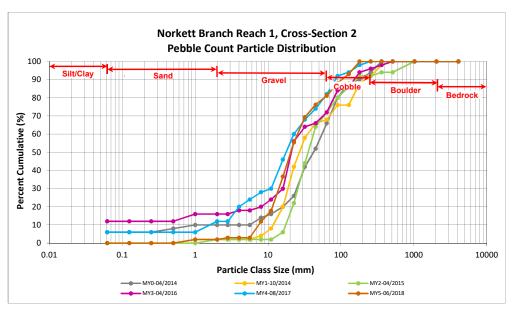

Monitoring Year 5 - 2018

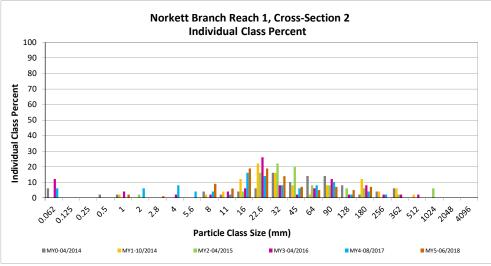
Norkett Branch Reach 1, Reachwide

		Diamete	er (mm)	Pa	rticle Co	unt	Reach S	Reach Summary			
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent			
		111111	IIIax	Mille	FUUI	Total	Percentage	Cumulative			
SILT/CLAY	Silt/Clay	0.000	0.062	12	35	47	47	47			
	Very fine	0.062	0.125					47			
	Fine	0.125	0.250		1	1	1	48			
SAND	Medium	0.25	0.50					48			
'לי	Coarse	0.5	1.0		2	2	2	50			
	Very Coarse	1.0	2.0					50			
	Very Fine	2.0	2.8					50			
	Very Fine	2.8	4.0					50			
	Fine	4.0	5.6	1	1	2	2	52			
	Fine	5.6	8.0		2	2	2	54			
362	Medium	8.0	11.0	2	4	6	6	60			
GRAVEL	Medium	11.0	16.0	2	3	5	5	65			
	Coarse	16.0	22.6	5		5	5	70			
	Coarse	22.6	32	5	1	6	6	76			
	Very Coarse	32	45	6		6	6	82			
	Very Coarse	45	64	3		3	3	85			
	Small	64	90	5	1	6	6	91			
CORBIE	Small	90	128	5		5	5	96			
Ogr	Large	128	180	4		4	4	100			
	Large	180	256					100			
	Small	256	362					100			
golder.	Small	362	512					100			
	Medium	512	1024					100			
¥	Large/Very Large	1024	2048					100			
BEDROCK	Bedrock	2048	>2048					100			
			Total	50	50	100	100	100			

Reachwide							
Channel materials (mm)							
D ₁₆ =	Silt/Clay						
D ₃₅ =	Silt/Clay						
D ₅₀ =	1.0						
D ₈₄ =	56.9						
D ₉₅ =	119.3						
D ₁₀₀ =	180.0						

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

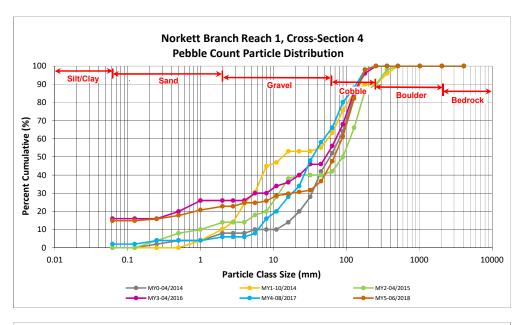

Monitoring Year 5 - 2018

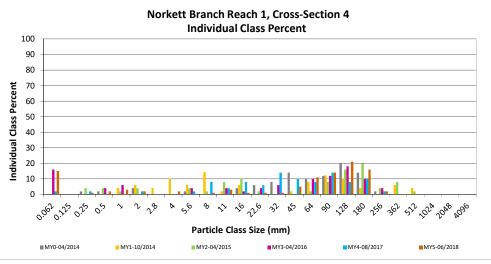
Norkett Branch Reach 1, Cross-Section 2

		Diamete	er (mm)		Sum	mary
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent
			mux		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
_	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
יכ	Coarse	0.5	1.0	2	2	2
	Very Coarse	1.0	2.0			2
	Very Fine	2.0	2.8	1	1	3
	Very Fine	2.8	4.0			3
	Fine	4.0	5.6			3
	Fine	5.6	8.0	9	9	12
365	Medium	8.0	11.0	6	6	18
GRAVEL	Medium	11.0	16.0	19	19	37
	Coarse	16.0	22.6	19	19	55
	Coarse	22.6	32	14	14	69
	Very Coarse	32	45	7	7	76
	Very Coarse	45	64	5	5	81
	Small	64	90	7	7	88
COBBLE	Small	90	128	5	5	93
CORV	Large	128	180	7	7	100
	Large	180	256			100
	Small	256	362			100
	Small	362	512			100
బ్రా	Medium	512	1024			100
*	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	101	100	100

	Cross-Section 2				
Channel materials (mm)					
D ₁₆ =	9.98				
D ₃₅ =	15.49				
D ₅₀ =	20.4				
D ₈₄ =	73.5				
D ₉₅ =	140.8				
D ₁₀₀ =	180.0				

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

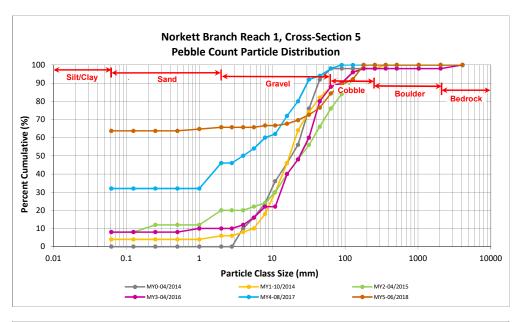

Monitoring Year 5 - 2018

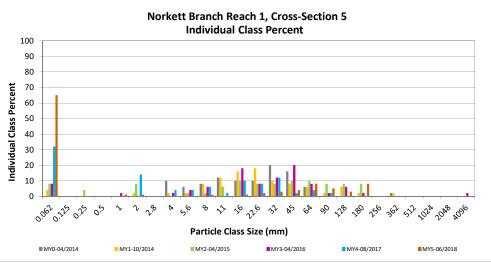
Norkett Branch Reach 1, Cross-Section 4

		Diamete	er (mm)		Sum	mary
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent
		111111	IIIax		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	15	15	15
	Very fine	0.062	0.125			15
_	Fine	0.125	0.250	1	1	16
SAND	Medium	0.25	0.50	2	2	18
יכ	Coarse	0.5	1.0	3	3	21
	Very Coarse	1.0	2.0	2	2	23
	Very Fine	2.0	2.8			23
	Very Fine	2.8	4.0	2	2	25
	Fine	4.0	5.6			25
	Fine	5.6	8.0	1	1	26
362	Medium	8.0	11.0	3	3	29
GRAVEL	Medium	11.0	16.0	1	1	30
-	Coarse	16.0	22.6	1	1	31
	Coarse	22.6	32	1	1	32
	Very Coarse	32	45	5	5	37
	Very Coarse	45	64	11	11	48
	Small	64	90	14	14	61
CORRIE	Small	90	128	21	21	82
COEC	Large	128	180	16	16	98
-	Large	180	256	2	2	100
	Small	256	362			100
godina.	Small	362	512			100
٧٥٧	Medium	512	1024			100
v	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048		•	100
			Total	101	101	100

	Cross-Section 4				
Chai	Channel materials (mm)				
D ₁₆ =	0.26				
D ₃₅ =	40.21				
D ₅₀ =	68.0				
D ₈₄ =	133.1				
D ₉₅ =	168.7				
D ₁₀₀ =	256.0				

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

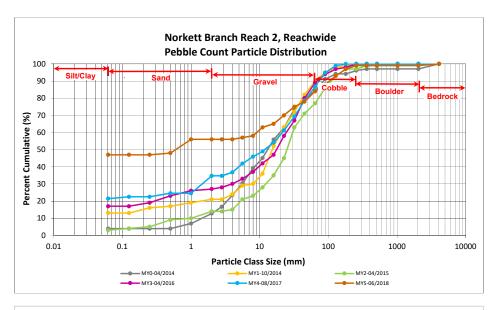

Monitoring Year 5 - 2018

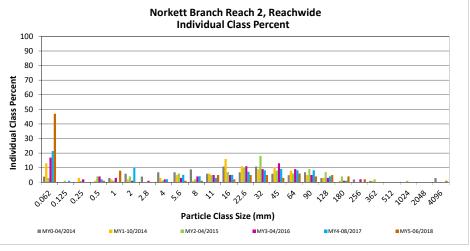
Norkett Branch Reach 1, Cross-Section 5

		Diamete	er (mm)		Sum	mary
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent
			IIIQX		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	65	65	64
	Very fine	0.062	0.125			64
_	Fine	0.125	0.250			64
SAND	Medium	0.25	0.50			64
۵,	Coarse	0.5	1.0	1	1	65
	Very Coarse	1.0	2.0	1	1	66
	Very Fine	2.0	2.8			66
	Very Fine	2.8	4.0			66
	Fine	4.0	5.6			66
	Fine	5.6	8.0	1	1	67
365	Medium	8.0	11.0			67
GRAVEL	Medium	11.0	16.0	1	1	68
	Coarse	16.0	22.6	2	2	70
	Coarse	22.6	32	3	3	73
	Very Coarse	32	45	4	4	76
	Very Coarse	45	64	8	8	84
	Small	64	90	5	5	89
COBBLE	Small	90	128	3	3	92
COBL	Large	128	180	8	8	100
	Large	180	256			100
galilate ⁴	Small	256	362			100
	Small	362	512			100
	Medium	512	1024			100
¥	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	102	102	100

Cross-Section 5				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	Silt/Clay			
D ₈₄ =	63.1			
D ₉₅ =	144.8			
D ₁₀₀ =	180.0			

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

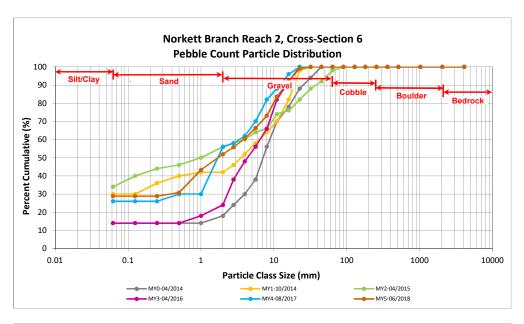

Monitoring Year 5 - 2018

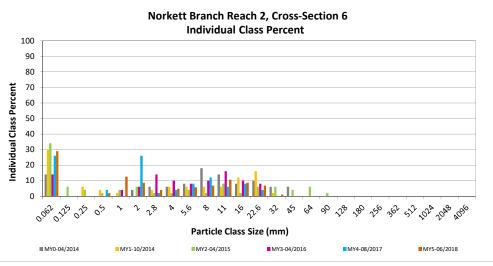
Norkett Branch Reach 2, Reachwide

		Diamet	er (mm)	Pai	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
		111111	IIIax	Killie	F 001	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	26	21	47	47	47
	Very fine	0.062	0.125					47
	Fine	0.125	0.250					47
SAND	Medium	0.25	0.50		1	1	1	48
יכ	Coarse	0.5	1.0	5	3	8	8	56
	Very Coarse	1.0	2.0					56
	Very Fine	2.0	2.8					56
	Very Fine	2.8	4.0					56
	Fine	4.0	5.6		1	1	1	57
	Fine	5.6	8.0		1	1	1	58
3,62	Medium	8.0	11.0	2	3	5	5	63
GRAVEL	Medium	11.0	16.0	1	1	2	2	65
	Coarse	16.0	22.6	3	2	5	5	70
	Coarse	22.6	32		5	5	5	75
	Very Coarse	32	45		3	3	3	78
	Very Coarse	45	64	2	4	6	6	84
	Small	64	90	3	1	4	4	88
ale	Small	90	128	3	2	5	5	93
CORBLE	Large	128	180	3	1	4	4	97
	Large	180	256	2		2	2	99
	Small	256	362					99
e distrib	Small	362	512					99
యి	Medium	512	1024					99
×	Large/Very Large	1024	2048					99
BEDROCK	Bedrock	2048	>2048		1	1	1	100
			Total	50	50	100	100	100

Reachwide			
Channel materials (mm)			
D ₁₆ =	Silt/Clay		
D ₃₅ =	Silt/Clay		
D ₅₀ =	0.6		
D ₈₄ =	64.0		
D ₉₅ =	151.8		
D ₁₀₀ =	>2048		

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

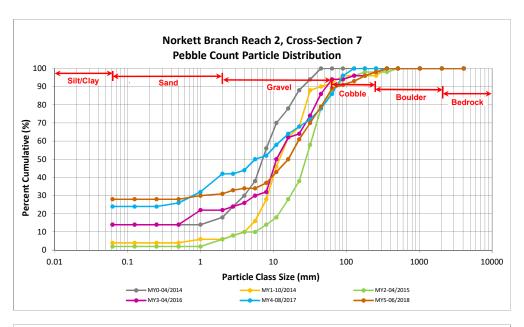

Monitoring Year 5 - 2018

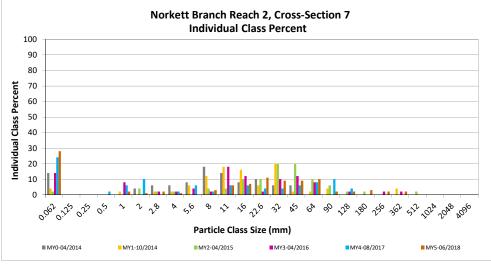
Norkett Branch Reach 2, Cross-Section 6

		Diamete	er (mm)		Sum	mary
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent
		111111	IIIax		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	30	29	29
	Very fine	0.062	0.125			29
_	Fine	0.125	0.250			29
SAND	Medium	0.25	0.50	2	2	31
۵,	Coarse	0.5	1.0	13	13	43
	Very Coarse	1.0	2.0	9	9	52
	Very Fine	2.0	2.8	4	4	56
	Very Fine	2.8	4.0	5	5	61
	Fine	4.0	5.6	6	6	66
	Fine	5.6	8.0	7	7	73
365	Medium	8.0	11.0	11	11	84
GRAVEL	Medium	11.0	16.0	9	9	92
	Coarse	16.0	22.6	7	7	99
	Coarse	22.6	32	1	1	100
	Very Coarse	32	45			100
	Very Coarse	45	64			100
	Small	64	90			100
COBBLE	Small	90	128			100
CORT	Large	128	180			100
	Large	180	256			100
earland	Small	256	362			100
	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	104	100	100

Cross-Section 6					
Cha	Channel materials (mm)				
D ₁₆ =	Silt/Clay				
D ₃₅ =	0.63				
D ₅₀ =	1.7				
D ₈₄ =	11.2				
D ₉₅ =	18.4				
D ₁₀₀ =	32.0				

Norkett Branch Stream Mitigation Site

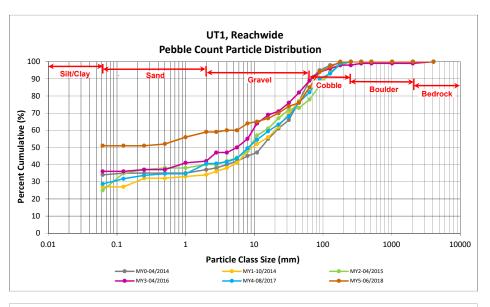

DMS Project No. 95360

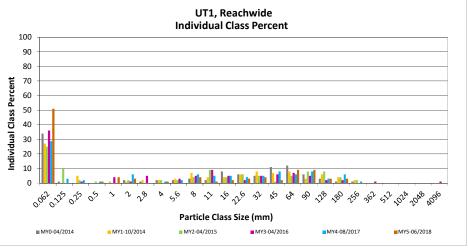

Monitoring Year 5 - 2018

Norkett Branch Reach 2, Cross-Section 7

		Diamete	er (mm)		Sum	mary
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent
	_		IIIax		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	28	28	28
	Very fine	0.062	0.125			28
_	Fine	0.125	0.250			28
SAND	Medium	0.25	0.50			28
۵,	Coarse	0.5	1.0	2	2	30
	Very Coarse	1.0	2.0	1	1	31
	Very Fine	2.0	2.8	2	2	33
	Very Fine	2.8	4.0	1	1	34
	Fine	4.0	5.6			34
	Fine	5.6	8.0	3	3	37
JEL	Medium	8.0	11.0	6	6	43
GRAVEL	Medium	11.0	16.0	7	7	50
	Coarse	16.0	22.6	11	11	61
	Coarse	22.6	32	9	9	70
	Very Coarse	32	45	9	9	79
	Very Coarse	45	64	10	10	89
	Small	64	90	2	2	91
CORRIE	Small	90	128	2	2	93
COBL	Large	128	180	3	3	96
	Large	180	256	2	2	98
	Small	256	362	2	2	100
BOULDER	Small	362	512			100
مري ا	Medium	512	1024			100
•	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048		-	100
			Total	100	100	100

	Cross-Section 7				
Channel materials (mm)					
D ₁₆ =	Silt/Clay				
D ₃₅ =	6.31				
D ₅₀ =	16.0				
D ₈₄ =	53.7				
D ₉₅ =	160.7				
D ₁₀₀ =	362.0				


Norkett Branch Stream Mitigation Site DMS Project No. 95360

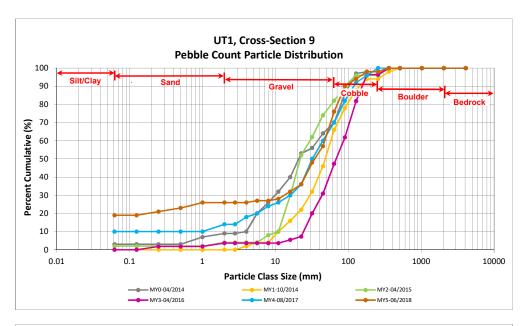

Monitoring Year 5 - 2018

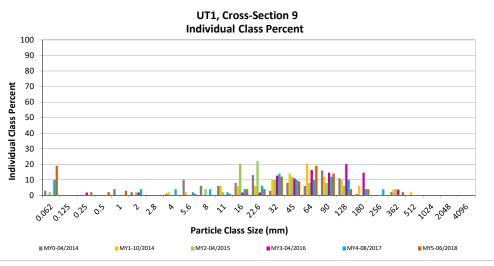
UT1, Reachwide

		Diamete	er (mm)	Pai	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
		111111	IIIdX	Killie	POOI	TOLAT	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	13	38	51	51	51
	Very fine	0.062	0.125					51
_	Fine	0.125	0.250					51
SAND	Medium	0.25	0.50	1		1	1	52
2,	Coarse	0.5	1.0	3	1	4	4	56
	Very Coarse	1.0	2.0		3	3	3	59
	Very Fine	2.0	2.8					59
	Very Fine	2.8	4.0	1		1	1	60
	Fine	4.0	5.6					60
	Fine	5.6	8.0	3	1	4	4	64
JEL	Medium	8.0	11.0	1		1	1	65
GRAVEL	Medium	11.0	16.0	1	1	2	2	67
	Coarse	16.0	22.6	2	1	3	3	70
	Coarse	22.6	32	3	1	4	4	74
	Very Coarse	32	45	1	1	2	2	76
	Very Coarse	45	64	8	1	9	9	85
	Small	64	90	8	1	9	9	94
COBBIE	Small	90	128	3		3	3	97
CORY	Large	128	180	2	1	3	3	100
	Large	180	256					100
	Small	256	362					100
*ONDE	Small	362	512					100
	Medium	512	1024					100
¥	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	Silt/Clay			
D ₈₄ =	61.5			
D ₉₅ =	101.2			
D ₁₀₀ =	180.0			

Norkett Branch Stream Mitigation Site

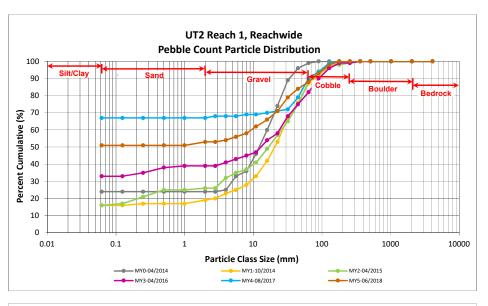

DMS Project No. 95360

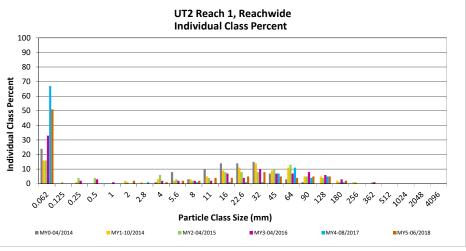

Monitoring Year 5 - 2018

UT1, Cross-Section 9

		Diamete	er (mm)		Summary		
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent	
		111111	IIIax		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	19	19	19	
	Very fine	0.062	0.125			19	
_	Fine	0.125	0.250	2	2	21	
SAND	Medium	0.25	0.50	2	2	23	
۵,	Coarse	0.5	1.0	3	3	26	
	Very Coarse	1.0	2.0			26	
	Very Fine	2.0	2.8			26	
	Very Fine	2.8	4.0			26	
	Fine	4.0	5.6	1	1	27	
	Fine	5.6	8.0			27	
364	Medium	8.0	11.0	1	1	28	
GRAVEL	Medium	11.0	16.0	4	4	32	
	Coarse	16.0	22.6	4	4	36	
	Coarse	22.6	32	12	12	48	
	Very Coarse	32	45	9	9	57	
	Very Coarse	45	64	19	19	76	
	Small	64	90	14	14	90	
COBBLE	Small	90	128	4	4	94	
COEC	Large	128	180	4	4	98	
-	Large	180	256			98	
	Small	256	362	2	2	100	
WO INDER	Small	362	512			100	
ag ^{NY}	Medium	512	1024			100	
¥	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048		•	100	
			Total	100	100	100	

	Cross-Section 9				
Channel materials (mm)					
D ₁₆ =	Silt/Clay				
D ₃₅ =	20.73				
D ₅₀ =	34.5				
D ₈₄ =	77.8				
D ₉₅ =	139.4				
D ₁₀₀ =	362.0				

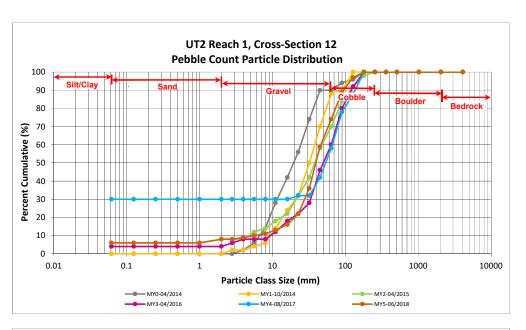

Norkett Branch Stream Mitigation Site DMS Project No. 95360

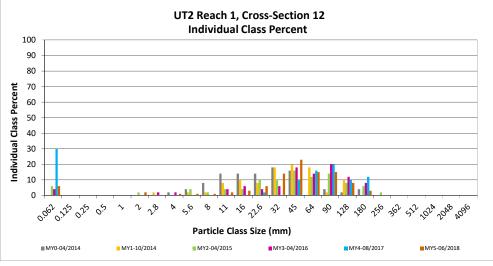

Monitoring Year 5 - 2018

UT2 Reach 1, Reachwide

		Diamete	er (mm)	Pai	rticle Co	unt	Reach Summary	
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
		111111	IIIax	Killie	FOOI	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	11	40	51	51	51
	Very fine	0.062	0.125					51
	Fine	0.125	0.250					51
SAND	Medium	0.25	0.50					51
יל	Coarse	0.5	1.0					51
	Very Coarse	1.0	2.0	2		2	2	53
	Very Fine	2.0	2.8					53
	Very Fine	2.8	4.0		1	1	1	54
	Fine	4.0	5.6	1	1	2	2	56
	Fine	5.6	8.0		2	2	2	58
JE	Medium	8.0	11.0	3	1	4	4	62
GRAVEL	Medium	11.0	16.0	4		4	4	66
	Coarse	16.0	22.6	3	2	5	5	71
	Coarse	22.6	32	6	2	8	8	79
	Very Coarse	32	45	4	1	5	5	84
	Very Coarse	45	64	4		4	4	88
	Small	64	90	5		5	5	93
ale	Small	90	128	5		5	5	98
COBBLE	Large	128	180	2		2	2	100
-	Large	180	256					100
	Small	256	362					100
eolloge	Small	362	512					100
ON.	Medium	512	1024					100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	Silt/Clay			
D ₈₄ =	45.0			
D ₉₅ =	103.6			
D ₁₀₀ =	180.0			

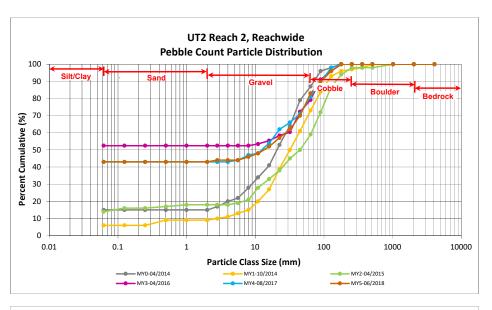

Norkett Branch Stream Mitigation Site DMS Project No. 95360

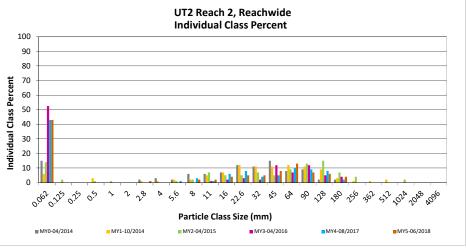

Monitoring Year 5 - 2018

UT2 Reach 1, Cross-Section 12

		Diamet	er (mm)		Summary		
Par	Particle Class		max	Riffle 100-Count	Class	Percent	
		min	IIIax		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	6	6	6	
	Very fine	0.062	0.125			6	
_	Fine	0.125	0.250			6	
SAND	Medium	0.25	0.50			6	
יכ	Coarse	0.5	1.0			6	
	Very Coarse	1.0	2.0	2	2	8	
	Very Fine	2.0	2.8			8	
	Very Fine	2.8	4.0	1	1	9	
	Fine	4.0	5.6	1	1	10	
	Fine	5.6	8.0	1	1	11	
1,62	Medium	8.0	11.0	2	2	13	
GRAVEL	Medium	11.0	16.0	3	3	16	
	Coarse	16.0	22.6	6	6	22	
	Coarse	22.6	32	14	14	36	
	Very Coarse	32	45	23	23	59	
	Very Coarse	45	64	15	15	74	
	Small	64	90	15	15	89	
COBBLE	Small	90	128	8	8	97	
COEL	Large	128	180	3	3	100	
	Large	180	256			100	
	Small	256	362			100	
godlogs.	Small	362	512			100	
	Medium	512	1024			100	
¥	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross-Section 12				
Channel materials (mm)					
D ₁₆ =	16.00				
D ₃₅ =	31.21				
D ₅₀ =	39.4				
D ₈₄ =	80.3				
D ₉₅ =	117.2				
D ₁₀₀ =	180.0				


Norkett Branch Stream Mitigation Site DMS Project No. 95360

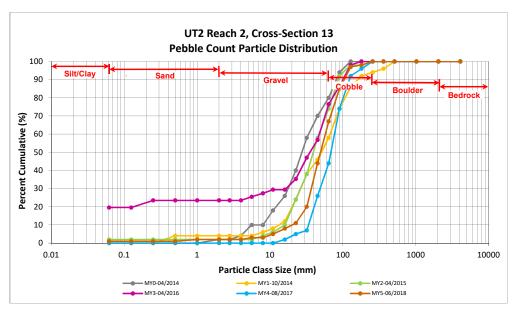

Monitoring Year 5 - 2018

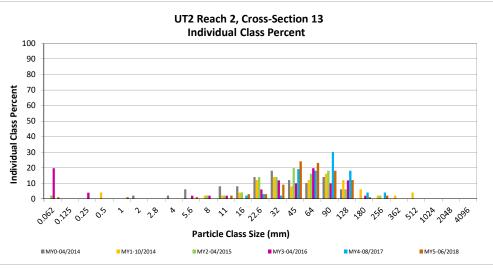
UT2 Reach 2, Reachwide

		Diamete	er (mm)	Pai	rticle Co	unt	Reach Summary	
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent
							Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	5	38	43	43	43
	Very fine	0.062	0.125					43
_	Fine	0.125	0.250					43
SAND	Medium	0.25	0.50					43
۵.	Coarse	0.5	1.0					43
	Very Coarse	1.0	2.0					43
	Very Fine	2.0	2.8		1	1	1	44
	Very Fine	2.8	4.0					44
	Fine	4.0	5.6					44
	Fine	5.6	8.0	1	1	2	2	46
167	Medium	8.0	11.0	1	1	2	2	48
GRAVEL	Medium	11.0	16.0	2	2	4	4	52
	Coarse	16.0	22.6	2	3	5	5	57
	Coarse	22.6	32	4	1	5	5	62
	Very Coarse	32	45	7	1	8	8	70
	Very Coarse	45	64	12	1	13	13	83
	Small	64	90	7		7	7	90
ale	Small	90	128	5	1	6	6	96
COBBIE	Large	128	180	4		4	4	100
	Large	180	256					100
	Small	256	362					100
sollois.	Small	362	512					100
.0 ⁰⁰	Medium	512	1024					100
v	Large/Very Large	1024	2048				_	100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	Silt/Clay			
D ₅₀ =	13.3			
D ₈₄ =	67.2			
D ₉₅ =	120.7			
D ₁₀₀ =	180.0			

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

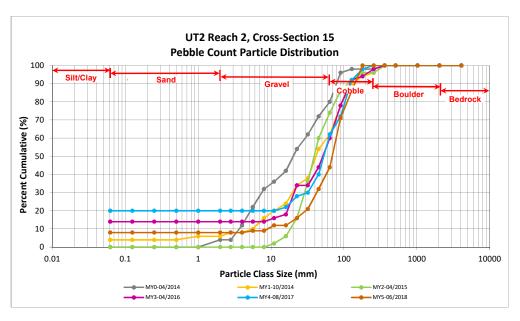

Monitoring Year 5 - 2018

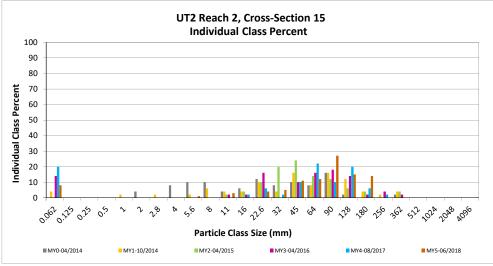
UT2 Reach 2, Cross-Section 13

Particle Class		Diamete	er (mm)		Summary		
		min	max	Riffle 100-Count	Class	Percent	
	SUT/CLAY Silt/Clay		IIIII IIIIA		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	1	1	1	
	Very fine	0.062	0.125			1	
	Fine	0.125	0.250			1	
SAND	Medium	0.25	0.50			1	
יכ	Coarse	0.5	1.0	1	1	2	
	Very Coarse	1.0	2.0			2	
	Very Fine	2.0	2.8			2	
	Very Fine	2.8	4.0			2	
	Fine	4.0	5.6	1	1	3	
	Fine	5.6	8.0			3	
3,62	Medium	8.0	11.0	2	2	5	
GRAVEL	Medium	11.0	16.0	3	3	8	
	Coarse	16.0	22.6	3	3	11	
	Coarse	22.6	32	9	9	20	
	Very Coarse	32	45	24	24	44	
	Very Coarse	45	64	23	23	67	
	Small	64	90	18	18	85	
COBBLE	Small	90	128	12	12	97	
COEC	Large	128	180	1	1	98	
	Large	180	256	2	2	100	
	Small	256	362			100	
BOULDER	Small	362	512			100	
مران	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

(Cross-Section 13			
Channel materials (mm)				
D ₁₆ =	27.42			
D ₃₅ =	39.60			
D ₅₀ =	49.3			
D ₈₄ =	88.3			
D ₉₅ =	120.7			
D ₁₀₀ =	256.0			

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

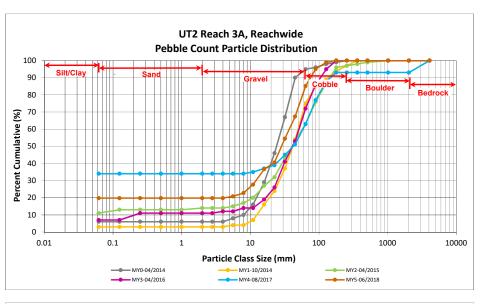

Monitoring Year 5 - 2018

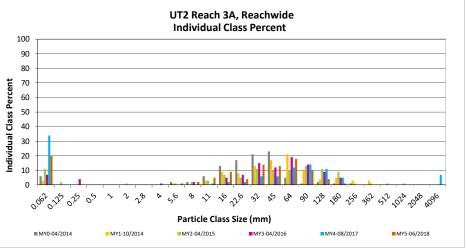
UT2 Reach 2, Cross-Section 15

		Diamete	er (mm)		Summary		
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent	
		max max			Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	8	8	8	
	Very fine	0.062	0.125			8	
	Fine	0.125	0.250			8	
SAND	Medium	0.25	0.50			8	
יל	Coarse	0.5	1.0			8	
	Very Coarse	1.0	2.0			8	
	Very Fine	2.0	2.8			8	
	Very Fine	2.8	4.0			8	
	Fine	4.0	5.6	1	1	9	
	Fine	5.6	8.0			9	
3,62	Medium	8.0	11.0	3	3	12	
GRAVEL	Medium	11.0	16.0			12	
_	Coarse	16.0	22.6	4	4	16	
	Coarse	22.6	32	5	5	21	
	Very Coarse	32	45	11	11	32	
	Very Coarse	45	64	12	12	44	
	Small	64	90	27	27	71	
COBBLE	Small	90	128	15	15	86	
COER	Large	128	180	14	14	100	
	Large	180	256			100	
	Small	256	362			100	
4010E	Small	362	512			100	
య	Medium	512	1024			100	
¥	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cross-Section 15							
Channel materials (mm)							
D ₁₆ =	22.60						
D ₃₅ =	49.14						
D ₅₀ =	69.0						
D ₈₄ =	122.1						
D ₉₅ =	159.4						
D ₁₀₀ =	180.0						

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

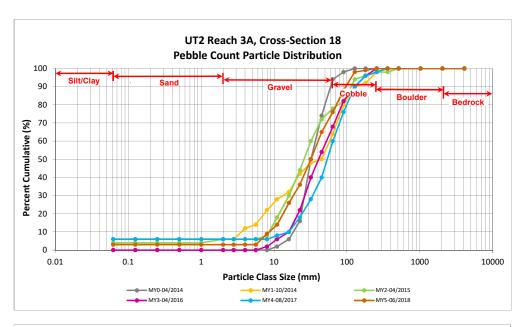

Monitoring Year 5 - 2018

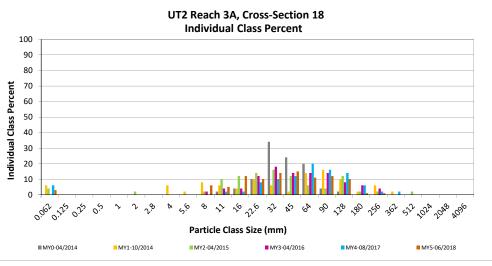
UT2 Reach 3A, Reachwide

		Diamete	r (mm)	Pai	rticle Co	unt	Reach Summary		
Par	ticle Class	min	max	Riffle	Pool	Total	Class	Percent	
		111111	IIIax	Killie	F001	Total	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	4	16	20	20	20	
	Very fine	0.062	0.125					20	
	Fine	0.125	0.250					20	
SAND	Medium	0.25	0.50					20	
۵,	Coarse	0.5	1.0					20	
	Very Coarse	1.0	2.0					20	
	Very Fine	2.0	2.8					20	
	Very Fine	2.8	4.0					20	
	Fine	4.0	5.6	1		1	1	21	
	Fine	5.6	8.0	1	1	2	2	23	
167	Medium	8.0	11.0	4	1	5	5	28	
GRAVEL	Medium	11.0	16.0	4	5	9	9	37	
	Coarse	16.0	22.6		4	4	4	41	
	Coarse	22.6	32	10	4	14	14	54	
	Very Coarse	32	45	7	6	13	13	67	
	Very Coarse	45	64	13	5	18	18	85	
	Small	64	90	4	6	10	10	95	
COBBLE	Small	90	128	2	2	4	4	99	
COEC	Large	128	180		1	1	1	100	
	Large	180	256					100	
	Small	256	362					100	
.067	Small	362	512					100	
gold die	Medium	512	1024					100	
	Large/Very Large	1024	2048					100	
BEDROCK	Bedrock	2048	>2048					100	
			Total	50	51	101	100	100	

Reachwide							
Channel materials (mm)							
D ₁₆ =	Silt/Clay						
D ₃₅ =	14.94						
D ₅₀ =	28.6						
D ₈₄ =	62.6						
D ₉₅ =	90.0						
D ₁₀₀ =	180.0						

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

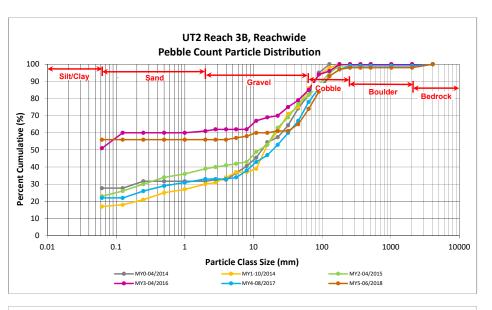

Monitoring Year 5 - 2018

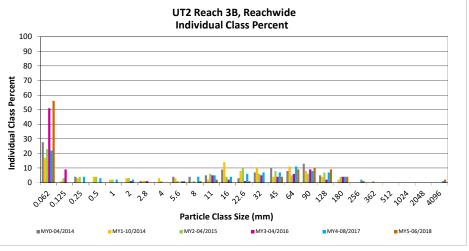
UT2 Reach 3A, Cross-Section 18

		Diamete	er (mm)		Summary		
Par	rticle Class	min	max	Riffle 100-Count	Class	Percent	
		IIIII IIIdx			Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	3	3	3	
	Very fine	0.062	0.125			3	
	Fine	0.125	0.250			3	
SAND	Medium	0.25	0.50			3	
יכ	Coarse	0.5	1.0			3	
	Very Coarse	1.0	2.0			3	
	Very Fine	2.0	2.8			3	
	Very Fine	2.8	4.0			3	
	Fine	4.0	5.6			3	
	Fine	5.6	8.0	6	6	9	
- (6)-	Medium	8.0	11.0	5	5	14	
GRAVEL	Medium	11.0	16.0	12	12	26	
-	Coarse	16.0	22.6	10	10	36	
	Coarse	22.6	32	14	14	50	
	Very Coarse	32	45	15	15	65	
	Very Coarse	45	64	11	11	76	
	Small	64	90	12	12	88	
at	Small	90	128	10	10	98	
COBBLE	Large	128	180	1	1	99	
	Large	180	256	1	1	100	
	Small	256	362			100	
	Small	362	512			100	
-0) ⁷	Medium	512	1024			100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cross-Section 18							
Channel materials (mm)							
D ₁₆ =	11.71						
D ₃₅ =	21.83						
D ₅₀ =	32.0						
D ₈₄ =	80.3						
D ₉₅ =	115.2						
D ₁₀₀ =	256.0						

Norkett Branch Stream Mitigation Site


DMS Project No. 95360

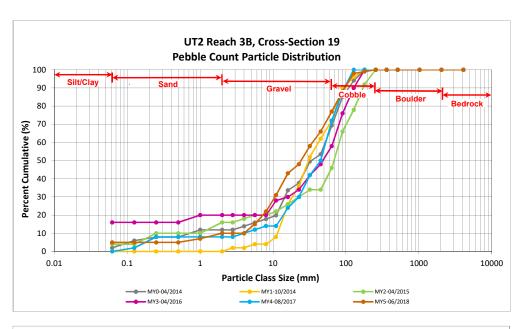

Monitoring Year 5 - 2018

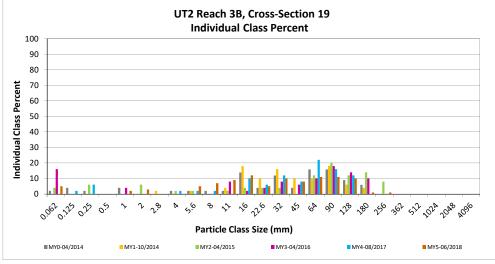
UT2 Reach 3B, Reachwide

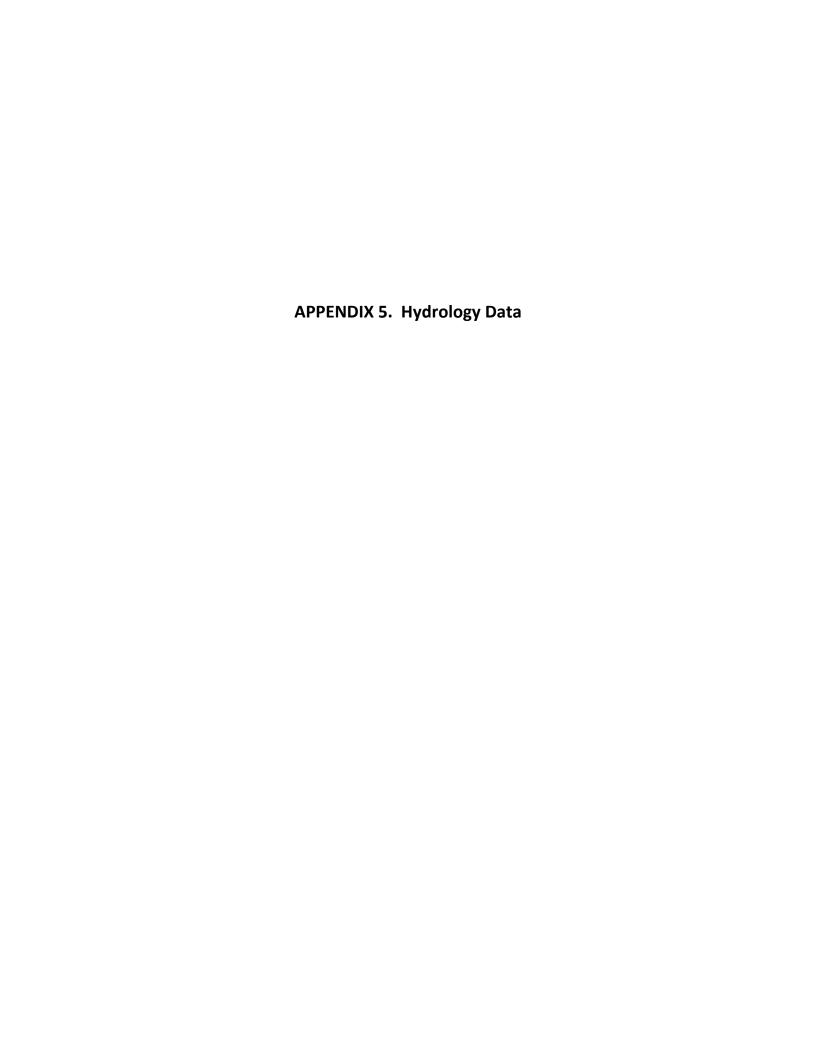
Particle Class		Diamete	er (mm)	Pa	rticle Co	unt	Reach Summary		
		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	17	39	56	56	56	
	Very fine	0.062	0.125					56	
	Fine	0.125	0.250					56	
SAND	Medium	0.25	0.50					56	
ج	Coarse	0.5	1.0					56	
	Very Coarse	1.0	2.0					56	
	Very Fine	2.0	2.8					56	
	Very Fine	2.8	4.0					56	
	Fine	4.0	5.6	1		1	1	57	
	Fine	5.6	8.0		1	1	1	58	
.,62	Medium	8.0	11.0		2	2	2	60	
GRAVEL	Medium	11.0	16.0					60	
	Coarse	16.0	22.6	1		1	1	61	
	Coarse	22.6	32					61	
	Very Coarse	32	45	2	2	4	4	65	
	Very Coarse	45	64	7	2	9	9	74	
	Small	64	90	9	1	10	10	84	
COBBIE	Small	90	128	8	1	9	9	93	
COBY	Large	128	180	4		4	4	97	
-	Large	180	256	1		1	1	98	
,	Small	256	362					98	
RONDER	Small	362	512					98	
	Medium	512	1024					98	
*	Large/Very Large	1024	2048					98	
BEDROCK	Bedrock	2048	>2048		2	2	2	100	
			Total	50	50	100	100	100	

Reachwide						
Channel materials (mm)						
D ₁₆ =	Silt/Clay					
D ₃₅ =	Silt/Clay					
D ₅₀ =	Silt/Clay					
D ₈₄ =	90.0					
D ₉₅ =	151.8					
D ₁₀₀ =	>2048					

Norkett Branch Stream Mitigation Site


DMS Project No. 95360


Monitoring Year 5 - 2018

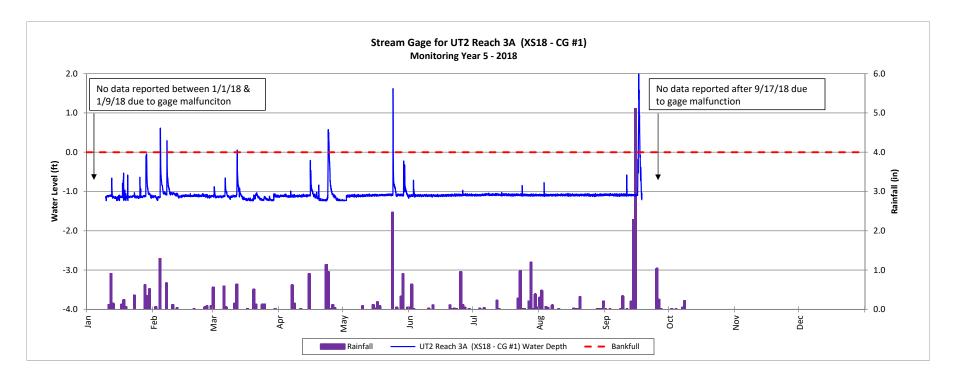

UT2 Reach 3B, Cross-Section 19

		Diamete	er (mm)		Summary		
Par	ticle Class	min	max	Riffle 100-Count	Class	Percent	
	SUT/CLAY Silk/Clay		max max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	5	5	5	
	Very fine	0.062	0.125			5	
	Fine	0.125	0.250			5	
SAND	Medium	0.25	0.50			5	
יל	Coarse	0.5	1.0	2	2	7	
	Very Coarse	1.0	2.0	3	3	10	
	Very Fine	2.0	2.8			10	
	Very Fine	2.8	4.0			10	
	Fine	4.0	5.6	5	5	15	
	Fine	5.6	8.0	7	7	22	
167	Medium	8.0	11.0	9	9	31	
GRAVEL	Medium	11.0	16.0	12	12	43	
	Coarse	16.0	22.6	5	5	48	
	Coarse	22.6	32	10	10	58	
	Very Coarse	32	45	8	8	66	
	Very Coarse	45	64	11	11	77	
	Small	64	90	11	11	88	
ale	Small	90	128	10	10	98	
COBBIE	Large	128	180	1	1	99	
	Large	180	256	1	1	100	
	Small	256	362			100	
golder.	Small	362	512			100	
رزي ا	Medium	512	1024			100	
96 7	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
	•	•	Total	100	100	100	

Cross-Section 19							
Channel materials (mm)							
D ₁₆ =	5.89						
D ₃₅ =	12.46						
D ₅₀ =	24.2						
D ₈₄ =	79.5						
D ₉₅ =	115.2						
D ₁₀₀ =	256.0						

Table 14. Verification of Bankfull Events

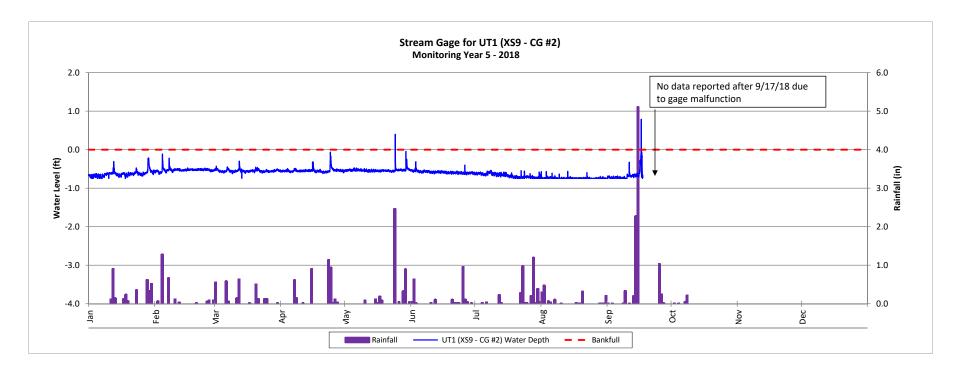
Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018


Monitoring Year	Reach	Date of Data Collection	Date of Occurrence	Method
		6/3/2014	5/30/2014	Stream Gage
	UT2 Reach 3A (CG #1 XS18)	9/4/2014	7/21/2014	Stream Gage
MY1	(11)	10/17/2014	9/16/2014	Wrack Line
		6/3/2014	5/30/2014	Stream Gage
	UT1 (CG #2 XS9)	9/4/2014	7/21/2014	Stream Gage
		6/3/2014	5/30/2014	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	9/4/2014	7/21/2014	Stream Gage
	(,	10/17/2014	9/16/2014	Stream Gage
		1/4/2015	1/4/2015	Stream Gage
		1/12/2015	1/12/2015	Stream Gage
		2/26/2015	2/26/2015	Stream Gage
	UT2 Reach 3A (CG #1 XS18)	3/5/2015	3/5/2015	Stream Gage
		4/19/2015	4/19/2015	Stream Gage
		10/3/2015	10/3/2015	Stream Gage, Crest Gage
MY2		1/4/2015	1/4/2015	Stream Gage
		1/12/2015	1/12/2015	Stream Gage
		2/26/2015	2/26/2015	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	3/5/2015	3/5/2015	Stream Gage, Crest Gage
		4/19/2015	4/19/2015	Stream Gage, Crest Gage
		10/3/2015	10/3/2015	Stream Gage, Crest Gage
		2/3/2016	2/3/2016	Stream Gage
				Stream Gage
	UT2 Reach 3A (CG #1 XS18)	2/16/2016	2/16/2016	
	012 Reach 3A (CG #1 A318)	2/24/2016	2/24/2016	Stream Gage
		3/28/2016	3/28/2016	Stream Gage, Crest Gage
MY3		10/8/2016	10/8/2016	Stream Gage
	UT1 (CG #2 XS9)	4/22/2016	Spring 2016	Crest Gage
		10/8/2016	10/8/2016	Stream Gage
		2/3/2016	2/3/2016	Stream Gage
	N	2/16/2016	2/16/2016	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	2/24/2016	2/24/2016	Stream Gage
		3/28/2016	3/28/2016	Stream Gage, Crest Gage
		10/8/2016	10/8/2016	Stream Gage
		1/22/2017	1/22/2017	Stream Gage
		4/24/2017	4/24/2017	Stream Gage
	UT2 Reach 3A (CG #1 XS18)	5/22/2017	5/22/2017	Stream Gage
MY4		5/24/2017	5/24/2017	Stream Gage
		6/20/2017	6/20/2017	Stream Gage
		6/29/2017	N/A	Crest Gage
	Norkett Branch Reach 2 (CG #3 XS6)	1/23/2017	1/23/2017	Stream Gage
	. Torkett Branch Reach 2 (CG #3 X30)	5/24/2017	5/24/2017	Stream Gage
		2/4/2018	2/4/2018	Stream Gage
		2/7/2018	2/7/2018	Stream Gage
	UT2 Reach 3A (CG #1 XS18)	3/12/2018	3/12/2018	Stream Gage, Crest Gage
	012 REACH 3A (CG #1 A318)	4/24/2018	4/24/2018	Stream Gage
		5/24/2018	5/24/2018	Stream Gage, Crest Gage
		9/16/2018	9/16/2018	Stream Gage, Crest Gage
MY5		5/24/2018	5/24/2018	Stream Gage
	UT1 (CG #2 XS9)	9/16/2018 ¹	9/16/2018 ¹	Stream Gage
	·	9/16/2018 ¹	9/16/2018 ¹	Stream Gage
		2/4/2018	2/4/2018	Stream Gage, Crest Gage
		4/24/2018	4/24/2018	Stream Gage
	Norkett Branch Reach 2 (CG #3 XS6)	5/24/2018	5/24/2018	Stream Gage, Crest Gage
		9/16/2018	9/16/2018	Stream Gage, Crest Gage
	<u> </u>	3/10/2019	3/10/2019	Stream dage, crest dage

¹ Two bankfull events were recorded on UT1 when the site received more than 5 inches of rain from the remnants of Hurricane Florence (9/16/18).

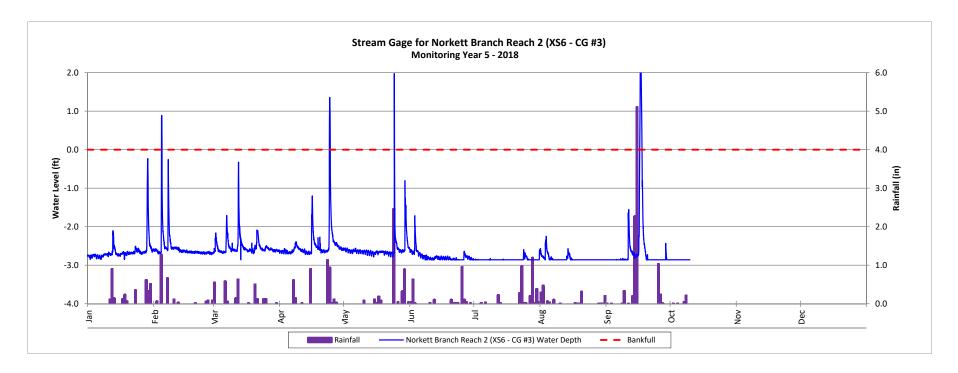
Recorded Bankfull Events

Norkett Branch Mitigation Project (DMS Project No. 95360)


Monitoring Year 5 - 2018

Recorded Bankfull Events

Norkett Branch Mitigation Project (DMS Project No. 95360)


Monitoring Year 5 - 2018

Recorded Bankfull Events

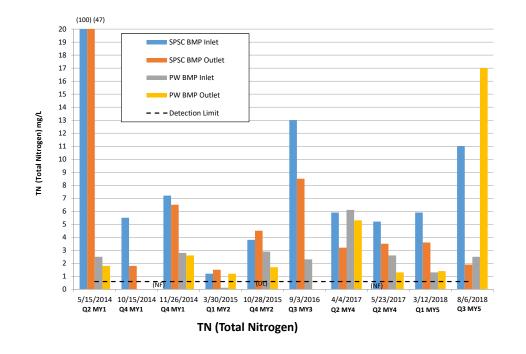
Norkett Branch Mitigation Project (DMS Project No. 95360)

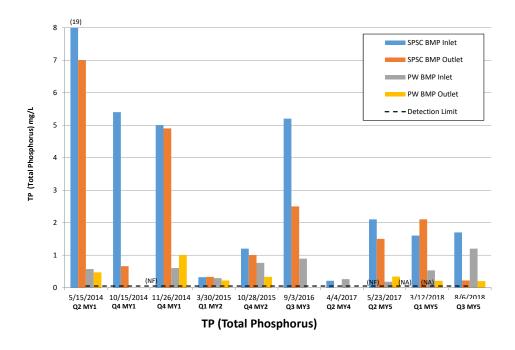
Monitoring Year 5 - 2018

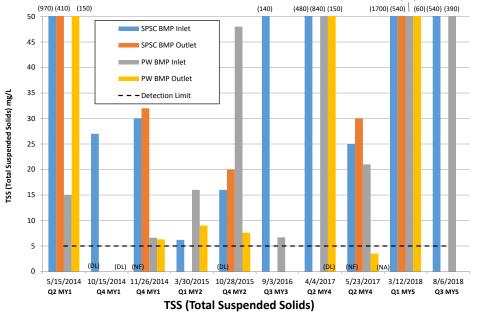
Table 15. Water Quality Sampling Results Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018

Monitoring Year	Location	Sample Collection Date	TN (mg/L)	NO _x (mg/L)	TKN (mg/L)	TP (mg/L)	TSS (mg/L)	FC (CFU/100mL)	Conductivity (μS/cm)	Temp °C	рН		
	SPSC BMP Inlet		1.1	0.2	0.9	0.4	16.0	31	151.0	21.4	7.0		
	SPSC BMP Outlet	4/22/2014	0.9	DL	0.9	0.5	25.0	11	127.6	23.5	7.3		
	PW BMP Inlet	(Baseflow)	DL	DL	0.5	0.2	11.0	68	65.0	25.3	7.4		
	PW BMP Outlet					0.3	39.0	110			7.0		
	SPSC BMP Inlet				50.0	19.0	970.0	20000			6.8		
My1 MY2 MY3 MY4	SPSC BMP Outlet	5/15/2014	47.0	18.0	29.0	7.0	410.0	20000	1185.0	21.0	6.9		
	PW BMP Inlet	3,13,201.	Date (mg/L) (mg/L) (mg/L) (mg/L) 4/22/2014 (Baseflow) 1.1 0.2 0.9 DL 0.9 DL 0.9 DL 0.1 DL 0.5 DL 0.1 DL 0.5 DL 0.1 DL 0.5 100.0 50.0 50.0 50.0 47.0 18.0 29.9 1.6 1.8 0.2 2.3 1.8 10/15/2014 7.2 2.2 5.0 4.8 0.2 1.7 11/26/2014 7.2 2.2 5.0 4.5 2.0 4.6 2.0 4.6 2.6 1.0 1.7 1.7 1.1 1.7 3/30/2015 1.5 0.12 1.3 1.1 1.7 1.1 1.1 1.2 0.12 1.1 1.1 1.2 0.12 1.1 1.2 1.1 1.2 0.12 1.1 1.2 2.4 2.	2.3	0.6	15.0	5600			6.9			
MY1					_						6.9		
											7.1		
		10/15/2014	1.8	0.2	1.7	0.7	1.7	2300	333.0	21.0	7.1		
		,,	NF										
											7.2		
		11/26/2014						HT			7.2		
											6.7		
			_					120			6.8		
											7.1		
MY1 MY2 MY3		3/30/2015		_							7.2		
										(µS/cm) Temp °C P 151.0 21.4 7 127.6 23.5 7 65.0 25.3 7 65.0 25.3 7 69.8 26.2 7 1230.0 21.0 6 1185.0 21.0 6 95.5 22.9 6 437.0 19.8 7 333.0 21.0 7 201.1 10.1 7 196.2 10.0 7 57.8 11.2 6 82.0 11.1 6 277.8 10.0 7 329.9 10.5 7 184.0 11.8 8 141.9 17.5 6 154.8 17.0 6 97.7 17.1 4 92.7 18.7 7 170.0 6 42.0 5 51.0 6 26.0 6 96.0 6 96.0 6 66.0 6 66.0 6 66.0 6	7.3		
MY2											8.1		
		10/28/2015									6.6		
MY2											6.4 4.2		
											7.2		
								DL					
								μт	(µS/cm) Temp °C 151.0 21.4 127.6 23.5 65.0 25.3 69.8 26.2 1230.0 21.0 1185.0 21.0 1185.0 21.0 95.5 22.9 11.3 23.8 437.0 19.8 333.0 21.0 201.1 10.1 196.2 10.0 57.8 11.2 277.8 10.0 329.9 10.5 184.0 11.8 141.9 17.5 154.8 17.0 97.7 17.1 92.7 18.7 170.0 170.0 170.0 200.0 42.0 51.0 200.0 180.0 300.0 96.0 96.0 96.0 96.0 96.0 96.0 26.0 96.0 26.0 61.0				
MY3		9/3/2016						ні					
			2.3	1.0	1.3	0.5		[
			5.9	0.7	5.2	0.2							
	SPSC BMP Inlet SPSC BMP Unitet PW BMP Inlet PW BMP Inlet PW BMP Inlet SPSC BMP Outlet SPSC BMP Outlet SPSC BMP Outlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Outlet SPSC BMP Outlet SPSC BMP Inlet SPSC BMP Outlet SPSC BMP Outlet SPSC BMP Inlet SPSC BMP Outlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Outlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Outlet PW BMP Outlet SPSC BMP Outlet PW BMP Outlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Outlet PW BMP Inlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Inlet SPSC BMP Outlet PW BMP Inlet SPSC BMP Outlet PW BMP Inlet SPSC BMP Outlet PW BMP Inlet SPSC BMP Outlet SPSC BMP Inlet SPSC BMP Outlet												
		4/4/2017					840.0						
MY4									170.0		6.7		
					_						6.6		
MY2 MY3		5/23/2017							42.0		5.8		
			1.3	DL	1.3	0.3	3.5		51.0		6.4		
											7.1		
	SPSC BMP Outlet	2/42/2045	3.6	DL	3.6	2.1	540.0		180.0		7.2		
		3/12/2018								(us/cm) Temp °C p 151.0 21.4 7 127.6 23.5 7 65.0 25.3 7 69.8 26.2 7 1230.0 21.0 6 95.5 22.9 6 437.0 19.8 7 333.0 21.0 7 57.8 11.2 6 82.0 11.1 6 277.8 10.0 7 329.9 10.5 7 184.0 11.8 8 141.9 17.5 6 154.8 17.0 6 97.7 17.1 4 92.7 18.7 7	6.5		
	PW BMP Outlet		1.4	0.4	0.9	0.2	60.0		96.0		6.6		
MY5											6.2		
MY2 MY3		0/5/2010									6.8		
	PW BMP Inlet	8/6/2018	2.5	0.8	1.8	1.2	390.0		61.0		6.2		
	PW BMP Outlet		17.0	0.3	17.0	0.2			22.0		6.5		

DL: Parameter was below the detection limit

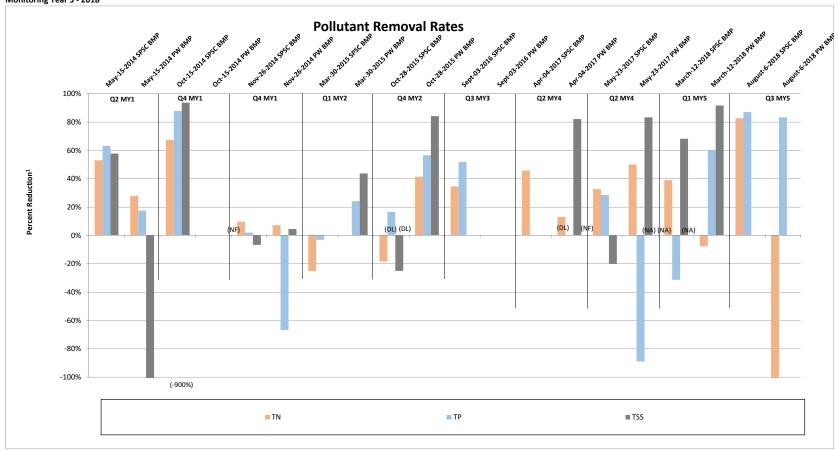

Table 16. Pollutant Removal Rates Norkett Branch Stream Mitigation Site DMS Project No. 95360 Monitoring Year 5 - 2018


Monitoring Year	Location	Sample Collection Date	Percent Reduction ¹					
			TN	NO _x	TKN	TP	TSS	FC
MY1	SPSC BMP	4/22/2014	18%	57%	1%	-29%	-56%	65%
	PW BMP	(Baseflow)	N/A	N/A	0%	-74%	-255%	-62%
	SPSC BMP	5/15/2014	53%	64%	42%	63%	58%	0%
	PW BMP		28%	27%	30%	18%	-900%	63%
	SPSC BMP	10/15/2014	67%	88%	60%	88%	94%	-369%
	PW BMP		N/A					
	SPSC BMP	11/26/2014	10%	9%	8%	2%	-7%	N/A
	PW BMP		7%	14%	0%	-67%	5%	
MY2	SPSC BMP	3/30/2015	-25%	25%	-30%	-3%	N/A	N/A
	PW BMP		N/A	0%	N/A	24%	44%	47%
	SPSC BMP	10/28/2015	-18%	-85%	16%	17%	-25%	7%
	PW BMP		41%	N/A	6%	57%	84%	N/A
MY3	SPSC BMP	9/3/2016	35%	-225%	71%	52%	N/A	N/A
	PW BMP		N/A	N/A	N/A	N/A	N/A	N/A
MY4	SPSC BMP	4/4/2017	46%	-67%	60%	N/A	N/A	N/A
	PW BMP		13%	78%	-6%	N/A	82%	N/A
	SPSC BMP	5/23/2017	33%	55%	28%	29%	-20%	N/A
	PW BMP		50%	N/A	41%	-89%	83%	N/A
MY5	SPSC BMP	3/12/2018	39%	N/A	32%	-31%	68%	N/A
	PW BMP		-8%	-64%	6%	60%	92%	N/A
	SPSC BMP	8/6/2018	83%	-163%	92%	87%	N/A	N/A
	PW BMP		-580%	56%	-844%	83%	N/A	N/A


[†]Positive values indicate a reduction in pollutant concentration from inlet to outlet samples, negative values indicate an increase in concentration N/A: Metric cannot be calculated

NF: No flow was available for sample collection/insufficient sample volume HT: Laboratory analysis was not available due to the short holding time for this parameter

Water Quality Data
Norkett Branch Stream Mitigation Site
DMS Project No. 95360
Monitoring Year 5 - 2018



Pollutant Removal Plot

Norkett Branch Stream Mitigation Site

DMS Project No. 95360

Monitoring Year 5 - 2018

DL: Parameter was below the detection limit

NF: No flow was available for sample collection/insufficient sample volume

NA: No data available at inlet and/or outlet sample for comparison

¹Positive values indicate a reduction in pollutant concentration from inlet to outlet samples, negative values indicate an increase in concentration